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EXECUTIVE SUMMARY 

In January 2008 a two-day workshop, jointly organized and sponsored by the 
Health Effects Institute1 (HEI), the US Centers for Disease Control and 

Prevention (CDC) and the US Environmental Protection Agency (US EPA), 
brought together representatives of state and national public health and 
environmental agencies and academic researchers from the United States, 

Canada and Europe to discuss key methodologic issues for the further 
development of the CDC’s Environmental Public Health Tracking Network 

(EPHTN). One objective of the EPHTN is building a national infrastructure that 
will enable ongoing, periodic and timely analyses of the health impacts of air 
pollution at the state and local levels.  Such an infrastructure would facilitate 

timely evaluations of the effects on public health of actions taken to improve 
air quality at the national, state and local levels.  To provide robust estimates 

of the health impacts of air pollution that will be useful to stakeholders, 
methods must be used that address the strengths and limitations of purely 
local analyses or of external (e.g. national) analyses. 

 
Building on previous work of the EPHT program and US EPA, the workshop 

was intended to consider suitable methods and further the development of 
indicators of the health effects of air pollution suitable for public health 

tracking of air pollution impacts at the state and local level. This report 
summarizes the workshop discussions and presents its recommendations.  It 
is intended to serve as a basis for detailed guides, protocols, and tools, 

commissioned by CDC, which will enable the ongoing and consistent 
implementation of health impact tracking work by the state agencies. 

 
Workshop participants comprised selected EPHT program participants, 
outside experts, and representatives of CDC, US EPA and HEI.  Outside 

experts were identified based on their extensive experience in the 
development and application of statistical and epidemiologic tools for air 

pollution health impact assessment (HIA) in both academic and policy 
settings in North America and Europe.  

Workshop participants were charged with producing recommendations for 

analyzing linked air quality and health data to estimate and track over time 
health impact indicators for two pollutants: fine particulate matter (PM2.5) 

and ozone for use at the U.S. state and local levels, and for communicating 
the results of the analyses to stakeholders.  Specifically, they were asked to 
recommend: 1) approaches for using analyses of state data to generate state 

and sub-state impact estimates for acute effects of air pollution; 2) 

                                                 
1
 The Health Effects Institute is an independent, nonprofit organization chartered in 

1980 to provide high-quality, impartial, and relevant science regarding the effects of 

air pollution on health. Supported jointly by the U.S. Environmental Protection 

Agency and industry, and periodically by other domestic and international partners, 

HEI provides science to inform decisions that are directly relevant to regulation and 

other actions to improve air quality. 
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approaches for using quantitative estimates of the relationship between air 
pollution exposure and health outcomes from the scientific literature to 

generate estimates of the acute and chronic health impacts in local areas; 
and 3) approaches to communicating the estimates and their limitations to 

stakeholders. 

MAJOR CONCLUSIONS AND RECOMMENDATIONS 

o Workshop participants emphasized the important potential contribution of 

the EPHTN, noting that future progress in public health protection will 
likely require improved understanding of local sources and control 

measures that require the engagement of local stakeholders, and that 
providing timely and locally relevant data on air pollution health impacts 
will be a motivating element of such engagement. 

o However, the workshop concluded that in the context of health impact 
assessment for PM2.5 and ozone purely local analyses, i.e., analyses that 

use only the air pollution and health data from a single geographic area, 
are unlikely to provide robust estimates of the relation between air 
pollution and acute and chronic health effects at the local level, although 

they may be appropriate for other research or surveillance applications as 
noted on page 17 and by Talbot et al (Annex B5).  Therefore, it is 

essential that various methods of “borrowing strength” from other 
evidence be used to make such estimates when quantifying local public 

health impacts. 

o The workshop recommends that the EPHT program should develop 
tracking of air quality health impacts incrementally.  Initial focus should 

be on those activities/products that are most feasible in the near-term in 
order to provide evidence of the future value of the program.   

o An initial goal should be the development, testing and application of a 
methodology for local health impact assessment in selected locations that 
uses quantitative estimates of the concentration-response relationships 

between air pollution exposure and health outcomes from the scientific 
literature.   Clear operational guidance for applying the method and 

communicating results should be provided.    

o In the longer term, a network of EPHT programs should develop analyses 
to produce cross-sectional estimates of local CR (concentration-response) 

functions that use methods that draw strength from pooled evidence 
across locations. Once established, this type of network could support 

longitudinal analyses that track the impact over time and thereby provide 
an assessment of the effectiveness of local, regional, and national air 
quality management initiatives. 

o Developing estimates using local data of the relationship between air 
pollution exposure and health at the state and sub-state levels will initially 

require considerably more methodological groundwork than will health 
impact assessment using published concentration-response estimates.  In 
addition, this approach requires a process that ensures standard methods 
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for data preparation and analysis across states, while addressing the 
requirements of data stewards in each state to ensure confidentiality. 

o Assessments of the health impacts of air pollution have quantified impacts 
variously, in terms of numbers of attributable deaths and/or other 

adverse health outcomes, years of life lost (or saved), and loss (or gain) 
of healthy life expectancy.   Which metric(s) best quantify the impacts of 
air pollution remains a controversial question among technical experts 

and policy makers. It is also not clear which metrics are the most 
effective for communication to diverse stakeholders, including the lay 

public. The EPHT should review the current experience with regard to 
choice of air pollution health impact metrics and the way in which they 
are communicated, with the goals of: 1) achieving consensus on the best 

approaches for the EPHTN; and 2) identifying critical knowledge gaps that 
could be addressed with additional research or methods development. 

 
o The EPHTN aims to produce state and sub-state level estimates of the 

effects of the health impacts of exposure to air pollution.  Providing a 

complete and straightforward account of the uncertainties in those 
estimates is critical to the overall transparency and credibility of the 

tracking network’s results, but presents considerable challenges for 
communicating both the extent of the uncertainties, and their 

implications. The CDC Environmental Public Health Tracking Program 
should review the current experience with regard to efforts to 
communicate uncertainty in estimates of health effects and health impact 

assessments of environmental hazards, with the goals of: 1) achieving 
consensus on the best approaches for the EPHTN; and 2) identifying 

critical knowledge gaps that could be addressed with additional research. 
 
o Communication among different agencies conducting health impact 

assessments is also needed. Currently in the US, health impact 
assessments of exposure to air pollution are being carried out by agencies 

at different levels, including US EPA, CDC, states and municipalities.  The 
tracking program should work with involved agencies to avoid, if possible, 
methodologic inconsistencies that could produce artifactual differences in 

impact estimates. A well-developed communication strategy about health 
effects and impacts of air pollution, coordinated with other relevant 

agencies such as US EPA, should be an integral part of the EPHT. 
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INTRODUCTION 

The United States has made considerable progress over the past 50 years in 
reducing levels of health-damaging ambient air pollution. However, National 

Ambient Air Quality Standards (NAAQS) for fine particulate matter (PM2.5) 
and ozone are currently exceeded in some areas of the country, and 
exposure to air pollution continues to affect the health of the US population 

in terms of increased mortality and morbidity from cardiovascular and 
respiratory disease.  Because the mission of CDC’s Environmental Public 

Health Tracking (EPHT) program is “…to provide information from a 
nationwide network of integrated health and environmental data that drives 
actions to improve the health of communities,”  ambient air quality is a 

priority content area for EPHT,  and informing and evaluating local pollution 
control efforts by providing stakeholders with timely and locally relevant 

information on the public health burden (e.g., in terms of cardiovascular and 
respiratory disease) of these pollutants is a key EPHT objective.  As a result 
of a collaborative effort of CDC, US EPA and state EPHT programs, an 

infrastructure, the Environmental Public Health Tracking Network (EPHTN), is 
being developed that will enable ongoing, periodic and timely analyses of the 

health impacts of air pollution at the state and local levels.  Such an 
infrastructure would facilitate timely evaluations of the effects on public 

health of actions taken to improve air quality at the national, state and local 
levels, part of a process that has been termed “accountability.” (HEI 2003) 
The development of indicators that link data on air quality and health events 

is a critical component of the EPHTN.   
 

The primary NAAQS are based on extensive evidence of serious public health 
impacts of criteria air pollutants, including PM2.5 and ozone (US EPA 2004a; 
US EPA 2006).  The implementation of the US NAAQS, including measures to 

reduce emissions from vehicles, electric power generating plants, industry, 
and other sources as well as changes in the US economy, has led to 

improvements in ambient air quality, which have been estimated to result in 
substantial public health benefits (US EPA 2004b; US EPA 2005a; US EPA 
2007).  While these improvements are projected to continue, increasing 

urban sprawl and traffic volume and congestion may be slowing progress and 
threatening future gains, especially in some regions (Frumkin et al. 2004).  

At the same time, evidence is growing of the importance of health impacts 
associated with intra-urban gradients in ambient air pollution, especially 
those related to traffic (Miller et al. 2007; Jerrett et al. 2005).  Thus, future 

advances in public health protection will likely require improved 
understanding of local sources and control measures that impinge on state 

and local land use and transportation policy.  The more such measures affect 
local stakeholders, the greater the need for their engagement in the process.  
Providing local stakeholders timely, understandable and locally relevant data 

on air pollution health impacts will be an important part of such engagement.   
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In January 2008 a two-day workshop, jointly organized and sponsored by 
HEI, CDC and US EPA, brought together representatives of state and national 

public health and environmental agencies and academic researchers from the 
US, Canada and Europe to further the development of indicators of the health 

effects of air pollution suitable for public health tracking at the state and local 
level, building on the work of the EPHT program to-date.  The workshop 
discussed key methodologic issues for indicator development, and made 

recommendations regarding further development and application of 
indicators.  The workshop was charged with providing a written report to 

CDC, summarizing its discussions and recommendations.  This report is 
intended to serve as a basis for the development of detailed guides, 
protocols, and tools, commissioned by CDC, which will enable the ongoing 

and consistent implementation of health impact assessment work conducted 
by the state agencies. 

 
BACKGROUND  
The Environmental Public Health Tracking Program 

Environmental public health tracking has been defined as the “ongoing 
collection, integration, analysis and dissemination of data from environmental 

hazard monitoring, human exposure tracking, and health effects surveillance” 
(Meyer et al. 2006; Environmental Health Tracking Project Team 2000).  

Consistent with CDC’s model of public health surveillance, the communication 
of findings to those with a “need to know” (Thacker et al. 1988) is a key 
component. The tracking model defines the stakeholders who are the target 

of dissemination efforts broadly to include policy makers, government and 
non-government agencies, business, researchers, the media, and members 

of the public.   
 
In 2002 the EPHT program began to establish a network of state and local 

health department tracking programs, in a capacity building and method 
piloting phase.  The program moved to a network implementation phase in 

2006 and is currently funding 16 states and one city health department to 
participate in the development of a national network of linked information 
systems that is expected to be launched in 2008.   In addition to health 

departments, four academic partners have been funded to develop methods 
and contribute to local projects and evaluation.   

 
Priority content areas of EPHT currently include air pollution, water quality, 
cancer, birth defects and other birth outcomes, lead poisoning, pesticides, 

carbon monoxide poisoning, and hospitalizations for asthma and acute 
myocardial infarction (AMI).  For each content area work groups have been 

established comprised of state and local grantee representatives, federal 
program staff, and academic partners, including an Air Content Team focused 
on air quality and health.  Their role is to set priorities, identify relevant 

datasets and to develop standards for data, metadata, analyses, indicators 
and reporting.  

 
Tracking air pollution-related health effects: objectives of the EPHTN  
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The Air Content Team has identified three objectives for the EPHTN in order 
that it ultimately will be able to provide stakeholders at the state and local 

levels with periodic and timely analyses to address such questions as:  
o What is the public health burden attributable to ambient PM2.5 and ozone 

levels?  
o How does the burden vary within and between states? 
o Is the burden changing over time, for example in response to efforts to 

reduce air pollution levels and population exposure?  
 

The objectives are: 
1. To make available to EPHT programs data on ambient air quality, 

relevant health outcomes, and other data needed to support public 

health tracking efforts;  
2. To estimate the health impacts of air pollution, focusing initially on the 

effects of PM2.5 and ozone.  Achieving this goal would entail estimating 
the effects of exposure at the state and sub-state levels, and 
quantifying the public health impacts of exposure in order to evaluate 

and guide prevention and control measures.  EPHT might also serve to 
identify populations that are at especially high risk and information 

about previously unsuspected health effects that could then be 
pursued further. 

3. To produce and disseminate findings to key stakeholders in the form of 
indicators and other reports.   

 

Meeting these objectives requires the development of indicators that link air 
quality and health outcomes and methods for their analysis that can provide 

valid and acceptably precise estimates in a tracking context.  The Air Content 
Team has proposed a set of indicators that link adverse health outcomes, 
including deaths, hospital admissions, and, in some states, other morbidity 

data, with estimates of ambient air pollution.  These indicators focus on fine 
particulate air pollution, PM2.5, and ozone because of their well-established 

links to serious adverse health effects, and because, as noted above, the 
NAAQS for these pollutants are currently exceeded in many areas of the 
country.  The EPHT program has also supported work on the analysis of 

these indicators in a tracking context.  Details on these activities and 
progress to date are described in presentations (Annexes D1-D3), in a 

working paper (Annex B5), and by Booth et al.  (2005). 
 
Meeting the challenges in measuring the public health burden of air 

pollution at the state and local level  
The environmental health indicators proposed by the Air Content Team that 

will use linked air pollution and health data (i.e. ‘linked indicators’) are more 
complex than purely descriptive measures such as numbers of residents in 
counties where air pollution levels exceed NAAQS criteria.  The Air Content 

Team and CDC agreed that further work is needed to address methodological 
issues and ensure that the analyses conducted as part of EPHT program will 

yield robust, public health relevant estimates of the health impacts of air 
pollution that will be useful to stakeholders.  Previous health impact 
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assessments of air pollution conducted in Europe, the US, and Canada have 
grappled with these issues (LeTertre et al. 2005; USEPA 2005b; Burnett et 

al.2005).  The current workshop was intended to bring this experience to 
bear on the work of the EPHT program, and to recommend approaches for 

implementation as the EPHTN continues to develop. 
 
There are considerable challenges for developing and interpreting linked 

indicators for PM2.5 and ozone.  While an extensive body of research has 
established causal links between exposure to these pollutants and human 

health, concentration-response (CR) relationships quantifying these links 
have been shown to vary among geographic areas and over time for a 
variety of reasons.  PM2.5 and ozone may serve in part as indicators of 

complex pollutant mixtures and variation in composition by space and time 
may alter the relationship of concentration to health impacts.  Additional 

modifying factors include population susceptibility, local health care 
utilization, services, and recording practices. In addition to these relatively 
stable local differences, exceptional local weather events or emission sources 

including forest or structural fires, or construction demolition may introduce 
different pollutant species or extreme pollutant levels within a local area.  In 

addition, local interventions, including enhanced air quality alerts, land use 
and transportation changes, and control of local point sources may alter local 

air quality, and affect human exposure and its relationship to health. 
 
Although estimates from purely local analyses should in theory best reflect 

local modifiers of a CR function, ’true’ CR relationships are small relative to  
random error and potential bias affecting  a single local study.  Thus, 

estimates based on local data only may not accurately reflect the underlying 
CR relationship, and may even give indications of either anomalous 
“protective” effects or implausibly large effect estimates of risk.  The 

methodological challenges are even greater for estimating time trends in the 
impact of air pollution on health at the state and sub-state levels.  

Additional challenges are posed by the need to meaningfully communicate to 
stakeholders the information gained from the EPHT analysis, while clearly 
setting out uncertainties and their implications.  

 
 

CHARGE TO THE WORKSHOP  

Workshop participants were charged with producing recommendations for 
analyzing linked air quality and health data to estimate and track over time 

health impact indicators for PM2.5 and ozone for use at the US state and local 
levels, and for communicating the results to stakeholders.   

Specifically, they were asked to recommend: 
 

1) Approaches for using analyses of state-level data to generate state 

and sub-state impact estimates for acute effects of air pollution.  
These approaches will consider the use of state level analyses in the 
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context of other information including findings from other locations 
and published research; 

 
2) Approaches for using external CR function estimates from the scientific 

literature to generate local estimates for chronic and acute effects.  
These approaches will need to consider local factors bearing on the 
applicability of published estimates.   

 
In formulating approaches to health impact assessment, workshop 

participants were asked to consider the following issues: 
 

• What available sources of monitored and modeled air pollution data 

are suitable and how should they be used? 
• What are recommended approaches for assessing variation in air 

pollution impact between and within states?  
• What are recommended approaches for assessing variation in air 

pollution impacts over time?  How should temporal changes in 

demography and pollutant composition be addressed analytically? 
• What resources are recommended to conduct health impact 

analyses, including technical expertise, data access, computational 
tools, infrastructure, and scientific review? 

• What are key sources of uncertainty? 
• How should uncertainty in estimates be characterized? 
• What research is needed to improve environmental public health 

tracking of air pollution effects? 
• What are the implications for national-level health impact 

assessment of state-level air pollution impact surveillance? 
• Should methodologies be developed and widely deployed for use by 

non-epidemiologists to estimate local CR relationships involving 

PM2.5 and O3? 
 

3) Approaches to communicating the estimates and their limitations to 
stakeholders. They were asked to consider the following questions: 
• How should quantitative impact estimates be expressed to 

stakeholders and the lay public (e.g., should risk estimates be 
presented as attributable morbidities or mortalities, years-of 

healthy life, or some other metric(s)?) 
• How should statistical or other uncertainties be presented so that 

they are neither over- nor under-emphasized?  

 

THE WORKSHOP PROCESS 

Participants 
The participants comprised selected EPHT program participants, outside 
experts, and representatives of CDC, US EPA and HEI.  Outside experts were 

identified based on their extensive experience in the development and 
application of statistical and epidemiologic tools for air pollution health 
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impact assessment in both academic and policy settings in North America 
and Europe. Participants are listed in Annex A.  

 
Jonathan Samet (Johns Hopkins Bloomberg School of Public Health) served 

as Chair.  Thomas Matte (CDC), Aaron Cohen (HEI), Jeremy Sarnat (CDC, 
EPHT and Emory/Rollins School of Public Health), Fuyen Yip (CDC, Air 
Pollution and Respiratory Health Branch), Nicholas Jones (CDC, EPHT), and 

Fred Dimmick (US EPA) comprised a workshop Steering Committee with 
overall organizational responsibility for the workshop and served as 

Rapporteurs, with primary responsibility for drafting the workshop report. 
 
Process 

Prior to the workshop the outside experts were provided with detailed 
information on the EPHT project and the health impact indicators it has 

developed in order to ensure that their expertise and experience was focused 
on advancing the work of the EPHT.  
 

To frame the relevant issues and suggest possible approaches for discussion 
eight working papers were commissioned and provided to all participants 

prior to the workshop. Authors were also asked to address future data 
acquisition and research needs relevant to their topic.  The papers are 

included in Annex B, having in some cases been revised following the 
workshop. 
 

The 2-day workshop program is presented in Annex C.  The workshop began 
with brief presentations from EPHT representatives and outside experts.  The 

goals and progress of the EPHT air content work group were described, 
including air pollution and health data being made available to the EPHTN, 
summaries of local analyses performed to estimate CR functions of the 

relation of PM2.5 to AMI in New York State and ozone to asthma emergency 
department visits in Maine.  Presentations on methodologic issues considered 

methods for pooling results of local analyses for acute effects, for applying 
external CR functions to produce local health impact estimates, and for 
tracking the change in CR functions over time and space for accountability 

purposes.  Examples of health impact assessments from the US, Canada and 
Europe were also presented.  These included HIAs concerning specific policy 

actions (such as London’s low emission zone) as well as efforts to estimate 
the impact of achieving proposed air pollution standards.  These presentation 
slides and summaries are provided in Annex D.   

 
The participants then broke into three working groups in order to develop 

recommendations as discussed above.  On the second day, the groups 
reported their recommendations to the entire workshop for discussion, 
refinement, and consensus.  

  
Following the workshop, the workshop Steering Committee and Dr. Samet 

prepared this workshop report summarizing the workshop discussions and 
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recommendations.  A draft was circulated to all participants for comment and 
revised as needed prior to submission of the final report to CDC.   

The authors of the working papers and the Steering Committee agreed that 
the working papers included in Annex B were an important contribution in 

their own right to the literature on environmental public health tracking and 
health impact assessment, and Drs. Samet, Matte, Cohen and Sarnat were 
charged with seeking opportunities for their joint publication in the peer-

reviewed literature along with a summary of this report.   
 

 

GENERAL WORKSHOP CONCLUSIONS AND RECOMMENDATIONS  
 

1. Future progress in public health protection will likely require improved 
understanding of local sources and control measures that require the 
engagement of local stakeholders.   

2. Providing timely and locally relevant data on air pollution health 
impacts will be an important part of such engagement.  Creating a 

network of state environmental health surveillance programs that can 
provide such data is consistent with the mission of the EPHT program.  
Because of variation in population susceptibility, health care and 

pollution composition, analyses using timely local data on ambient air 
quality and relevant health outcomes that can be routinely compiled by 

EPHT programs can be valuable for local health impact tracking when 
used as part of an appropriate analytic strategy. 

3. However, purely local analyses, i.e., analyses that use only the air 

pollution and health data from a single geographic area, are unlikely to 
provide robust estimates of local CR functions or health impacts of 

short-term exposure. Moreover, because studies of the effects of long-
term exposure on chronic diseases are infeasible in most locales, 

purely local analyses to estimate CR functions for effects of longer-
term exposure are not an option.  Therefore, it is essential that various 
methods of “borrowing strength” from other evidence be used to 

estimate CR functions for health impact estimates. 
4. The EPHT program should develop tracking of air quality health 

impacts incrementally.  Initial focus should be on those 
activities/products that are most feasible in the near-term in order to 
provide evidence of the value of the program going forward.   

Feasibility depends on our current confidence in, and availability of, 
local data on air quality, health outcomes and CR function estimates.  

o An initial goal should be the development, testing and 
application of a methodology for local health impact 
assessments in selected locations using existing, peer-reviewed 

evidence as a source of CR functions along with clear 
operational guidance for applying the method and 

communicating results.  
o A network of EPHT programs should ultimately develop analyses 

for cross-sectional estimates of local CR functions that are 

planned and designed to draw strength from pooled evidence 
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across locations using one or more methods presented at this 
workshop. Once established, such a network could support 

longitudinal analyses that are essential for assessing the 
effectiveness of local and, regional, and national air quality 

management initiatives. 
o Local CR function estimation for tracking purposes will initially 

require considerably greater methodologic groundwork, a 

process that ensures standard methods for data preparation and 
analysis, while addressing the requirements of data stewards to 

ensure confidentiality. 
o An incremental approach is discussed in more detail in the next 

section. 

 
5. The continuing development of EPHT for effects of air pollution on 

health will require on-going close coordination between environmental 
and health agencies at the state and federal levels as well as 
collaboration with the research community.  For example, both US EPA 

and the states will be conducting HIAs, albeit at different spatial 
scales.  The methodologies should be consistent so that their results 

can be considered in a unified fashion.  
 

 
AN INCREMENTAL APPROACH TO PUBLIC HEALTH TRACKING OF AIR 
POLLUTION   

The workshop discussed a multi-stage approach to implementing state-level 
tracking of air pollution health impacts (Figure 1).  An initial goal should be 

the development, testing and application of a methodology for local HIA in 
selected locations using existing, peer-reviewed evidence as a source of CR 
functions along with clear operational guidance for applying the method and 

communicating results (left side of Figure 1).  In settings in which statistical 
power and resources are adequate for local epidemiology, a network of EPHT 

programs should in the longer term develop analyses for cross-sectional 
estimates (i.e., point estimates for the effect of air pollution across some 
period of time) of local CR functions that are planned and designed to draw 

strength from pooled evidence across locations (right side of Figure 1) using 
one or more methods presented by Fuentes at this workshop (Annex D6) and 

discussed in a working paper (Annex B1).  Once the capacity for such 
planned, pooled cross-sectional analyses is demonstrated, such a network 
could support longitudinal accountability analyses as described by Burnett et 

al. (Annexes B8 and D8) to assess the effectiveness of local, regional, and 
national air quality management initiatives. 
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Figure 1:  Conceptual model for staged development of air pollution health 
impact assessment for Environmental Public Health Tracking 
 

 

Local evidence 

Confidence in/availability of local data  

Use external 
CR functions, 
other national/ 
regional data 

Use local data to 
match/modify CR 
(demographics, 
disease prevalence) 

Use shrunken city-
specific estimates 
(combine local and 
pooled epidemiology)  

Emphasize/ 
Give more weight 
to local 
epidemiology 

External evidence 

 Initial stages – use of external CR function 
estimates 

Later stages – use of local CR 
function estimates 
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Initial stage - Use of external CR functions for local health impact 

estimates 

Application of external CR functions within an HIA framework has the 

advantage of being less methodologically complex than local time series or 
case-crossover analyses, while still being able to include information on local 
air quality and morbidity and mortality rates.  The availability of software 

tools, such as EPAs BenMAP and WHO’s AirQ, facilitates the computations.  
Nonetheless, this approach involves many decisions, assumptions and steps 

including the preparation of local data. The steps involved in a local health 
impact assessment based on external CR functions were described by 
Hubbell and Fann (Annex D7) and Levy (Annex D11) at this workshop, and 

are summarized below.  

Steps in local health impact assessment based on external CR 
function estimates 

 

• Characterize the study location in terms of relevant demographics 
and other population factors, region, and meteorology  

 
• Identify appropriate air pollution CR function estimates from studies 

closely matching the local area.  

 
• Analyze local morbidity and mortality data to compute background 

rates for populations applicable to the CR functions to be applied. 
 
• Combine air quality data with population information to develop 

estimates of population-level potential exposure metrics (e.g. 8-
hour maximum ozone, daily average PM2.5). 

 
• Define a counter-factual or comparison air quality scenario, e.g., a 

reduction from current ambient concentrations. (see glossary) 

 
• Link changes in population exposure to ambient air pollution to CR 

functions and background rates to generate distributions of changes 
in the incidence of health outcomes.  

 
• Develop summary statistics to describe health impact estimates and 

measures of uncertainty, e.g. mean, 95 percent confidence interval; 

and graphs, e.g. cumulative distribution functions and box-plots. 
 

• Describe other dimensions of uncertainty qualitatively. 
 
• Document all data sources and assumptions. 
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Although this general approach is suitable as an initial stage of health impact 

assessment for EPHT, a number of methodological issues must be addressed 
to ensure consistent, scientifically sound, well-documented estimates are 

produced with limitations that are characterized and communicated to 
stakeholders.   

 

Methodological considerations  

The following issues need to be considered carefully when using external CR 
functions for health impact estimates in a given locale. 

 
o Definition of ‘local’ In “transferring” (Annexes B2 and D7) an 

external CR function estimate to compute a local health impact the 

analysis should where possible be consistent with the study methods 
from which the CR functions are derived. (Samet 2008)  Since most air 

pollution epidemiologic studies have assigned exposure at the level of 
the city or metropolitan area or have used data from monitors whose 
measurements are correlated  within a city over time, this approach is 

most suitable for generating estimates at the level of a city or 
metropolitan area.  

 
The estimated health impacts of air pollution may vary within a city or 
metropolitan area because of geographic variation in the baseline incidence 

and/or susceptibility, or because of intra-urban concentration gradients.  As 
noted by Levy (Annex D11) a city-wide estimate of impact may not be 

sensitive to whether the analysis considers only the average background 
disease rates across a city, but the estimated distribution of impacts within a 

city population may be highly sensitive to differences in background 
incidence and susceptibility.  Reliable data on morbidity and mortality rates 
in subpopulations will be available for some health conditions, and these data 

can be used to directly capture variability in disease incidence/prevalence or 
to model this variability stratified by geography and demographics. In 

contrast, sufficient monitoring data to characterize intra-urban exposure 
gradients are generally limited or not available, making it necessary to rely 
on modeled concentration data to capture exposure differences in within-city 

impact analyses. Land use regressions and related techniques can provide 
such information in some settings, although the relative spatial homogeneity 

of PM2.5 and ozone in many settings implies that such analyses may not be 
necessary for health impact assessments. Impact estimates outside urban 
areas may be limited by the lack of ambient monitoring data, requiring the 

use of modeled ambient concentration data, which is discussed below.   
 

o Source of ambient pollution concentration data Most 
epidemiologic studies that are used to derive CR functions are 
conducted using a limited number of fixed site monitors to estimate 

exposure for a city or metropolitan area.  A local HIA using an external 
CR function should therefore attempt to mimic this exposure 
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assessment by using local, fixed site ambient monitors designed to 
track population exposure for a city or metropolitan area for which a 

HIA is being conducted.  A drawback of this approach is that it 
precludes HIA estimates for large areas of many states that are not in 

close proximity to a metropolitan area.  Deterministic model-based 
(e.g. Community Multi-scale Air Quality or CMAQ) or statistically-based 
(e.g. Hierarchical Bayesian) estimates could be used to provide 

estimates of ambient pollutant concentrations where such gaps exist 
(see White Annex B3; Dimmick Annex D).  However, such estimates 

should be used cautiously as they may introduce additional analytical 
uncertainty and have not been validated.   

 

 
o Selection of CR functions from the literature Assessing 

transferability of estimates is perhaps the most crucial step in the 
process and the one that may present the greatest barrier to 
consistent implementation by EPHT programs. Factors to consider 

include: regional geographic differences in pollutant mixture and 
particle composition, population demographics, meteorology and its 

impact on behavior and exposure, housing characteristics such as 
prevalence of air conditioning, and health care factors such as use of 

medications that may modify observed CR associations (e.g., statins).  
The applicability of estimates from chronic exposure cohort studies is 
also influenced by the characteristics of the cohort population.  For 

example, the American Cancer Society cohort (Pope et al. 2002) was 
shown to include lower proportions of low-income, minority 

participants than are found in many cities.  
 

o Tracking health impacts over time While external CR function 

health impact assessments can be repeated over time as one way of 
estimating potential benefits of improving air quality (or harm from 

worsening air quality), this approach has important limitations 
compared to longitudinal “accountability” studies designed to assess 
the impact of specific pollution control strategies (HEI Accountability 

Working Group 2003).  Without information on temporal trends in CR 
functions, such serial estimates will only vary as a function of ambient 

pollution concentrations and local incidence rates. The effects of 
meteorology on ambient pollution concentrations, and of changes in 
health care on local incidence rates, further complicate the 

interpretation of serial HIA estimates. 
 

Near-term implementation recommendations 
1. EPA and CDC should develop specific operational guidance for 

implementation of health impact assessment using external CR functions.  

The guidance should include: 
 

a. A library of recommended CR functions classified based on geographic, 
demographic, housing, climate, pollutant composition and other 
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variables affecting transferability of estimates.  In addition, the data 
that health tracking programs should use to characterize their 

populations should be described along with a clear process for 
mapping these characteristics to suitable CR functions.  

b. Preferred methods applicable to each CR function of assigning ambient 
concentration estimates using monitored data where available and 
modeled data where not available. 

c. A standard set of counterfactual (i.e. comparison) ambient pollution 
scenarios and recommended methods for operationalizing them in the 

HIA analysis. 
d. Standard procedures for preparing health outcome and air pollution 

data and computing local background incidence rates.  

e. Standard procedures for computing uncertainty in HIA estimates. 
f. Standard procedures for conducting sensitivity analyses. 

g. A template for reporting the findings of HIA, including quantitative and 
qualitative assessments of uncertainty. 
 

2. EPA’s BenMAP software provides a useful framework and flexible 
computational tools for implementing HIA based on the external CR 

function approach.  It could, therefore, be adapted for use in 
environmental public health tracking, provide that clear guidelines were 

developed for its use in this context. . 
 
3. CDC and EPA should assess feasibility of implementation of HIA based on 

external CR functions by tracking programs with current resources and 
staffing and take steps to address any gaps. 

 
4. CDC and EPA should implement training and provide ongoing technical 

assistance for tracking program staff implementing HIA based on external 

CR functions.  
 

5. The guidance and training developed should be piloted in selected states 
and refined based on lessons learned. 

 

6. The guidance should be peer reviewed and periodically re-reviewed to 
enhance the confidence of tracking programs and stakeholders that HIAs 

are based on scientifically sound methods. 
  

Improving health impact assessment based on external CR functions and 

transitioning to local analyses  
As tracking programs implement HIA based on external CR functions specific 

limitations of available local data will likely become apparent, serving to 
inform efforts to collect key data and conduct additional analyses.  For 
example, air conditioning prevalence may modify CR functions, but timely 

local data on air conditioning prevalence may not be available.  Local surveys 
may be conducted to fill this information gap.  In other cases, limitations of 

available ambient monitoring data or modeled estimates may be shown to be 
a key source of uncertainty in health impact estimates, thereby driving 
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efforts to enhance monitoring or validate modeling.  Another way in which 
improvements may occur over time is through local analyses that help inform 

decisions about which CR functions available from a library of published 
estimates, such as that provided by BenMAP or similar programs, would best 

correspond to local conditions. Such local analyses might also indicate the 
need to consider specific features of the local population when estimating 
health impacts within a given area.   

 
While the focus of health impact assessments initially will be on widely 

available data, including mortality, hospital admission, and increasingly, 
emergency department visits, these outcomes are influenced by changes in 
health care practices and improvements in treatment.  Tracking programs 

should explore the feasibility of monitoring data on other health endpoints, 
such as school absence, bronchodilator medication use, or clinic visits that 

may be more sensitive to pollution effects.   The increasing availability of 
electronic health records may facilitate such efforts.  
 

EPA should further develop and evaluate methods that improve the spatial 
and temporal resolution and gaps in the ambient monitoring data to assist in 

future HIA analysis.  Improving coverage outside of urban areas and 
resolution of intra-urban concentration gradients are both priorities.  Efforts 

should include further evaluation of existing models and methodology such 
as CMAQ and HB to better characterize uncertainty and applicability to HIA. 
As experience is gained in computing local HIA and communicating the 

results to stakeholders, information gaps and priorities for analyses needed 
can help inform the next stage of tracking, which is described below 

 

Later stage – Use of CR function estimates from local analyses 

Given the many factors bearing on transferability of external CR function 

estimates to a local setting, using local analyses to contribute to CR 
estimates is a more direct, though more technically complex, method for 

addressing local factors. New York State and Maine analyses (Annexes D1 
and D2) presented at this workshop serve as examples of local analyses 
conducted for tracking objectives.  While the local data they employed 

require no assumptions about transferability, the results serve to illustrate 
the limits of purely local analyses.  In New York State, the reported risk 

estimate between ambient PM2.5 measured in urban areas and AMI was 
consistent with other published findings, but the estimate was imprecise and 
not statistically significant.  The results also suggested that some subgroups 

were at greater risk of ozone effects, but again limited power of the local 
data precluded firm conclusions.  In Maine, ambient ozone concentrations 

were directly related to asthma ED visits in 2000-2002, but the findings 
suggested an anomalously protective (though not statistically significant) 
association in 2003.  

These local examples reinforce lessons learned from prior multi-city analyses 
(Samet et al. 2000; Katsouyanni et al. 2001): because the estimated CR 

functions relating air pollution to health outcomes are often modest in 
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relation to unexplained error, purely local estimates typically cannot support 
robust health impact estimates in most locations. 2  It is therefore essential 

that one of the available statistical approaches as were described at this 
workshop by Fuentes (Annexes B1 and D6) should be used to allow local 

estimates to draw strength from other data. 

 
Methodological considerations 

 
o Definition of ‘local’ The definition of ‘local’ should ultimately be 

population-based with the option of specific states using alternative 
levels of scaling.  Realistically, the highest degree of spatial resolution 
for a local analysis in most cases is limited by the current resolution of 

available ambient pollution data to either the county or city level.  
Implicit in this definition is the issue of analytical uncertainty.  

 
o Source of ambient pollution concentration data  As with external 

CR function applications, data from ambient monitoring networks are 

often available for large metropolitan areas with limited coverage 
outside of urban areas.  While either integrated (AQIS) or continuous 

(AIRNow) monitoring data is available, as noted by Warren White 
(Annex B3), the former is designed for assessing compliance with 

NAAQS whereas continuous monitoring data can provide better spatial 
and temporal coverage useful for local time series or case-crossover 
analyses.   Approaches that have been applied to improve spatial 

resolution, especially for intra-urban exposure gradients, include 
kriging and land-use regression modeling.  These methods have been 

most useful for estimating average ambient concentrations in chronic 
exposure cohort studies.  

 

CMAQ modeling has been used to provide greater spatial estimates of 
pollutant levels over longer periods of time, such as an ozone season.  

Given their reliance on relatively fixed source strengths, CMAQ and 
other meteorological-based models may underestimate temporal 
variability.  Using these exposure estimates to derive a local CR 

function may, therefore, yield biased estimates.  To address limitations 
of CMAQ estimates, there are efforts to use both ground level data 

from the AQS network with CMAQ estimates within an hierarchical 
Bayes (HB) modeling framework to generate a national, spatially-
contiguous grid of PM2.5 and O3 concentrations.  In collaboration with 

                                                 
2
 The limitations of purely local analyses were discussed in the context of analyses to 

produce health impact estimates for two air quality measures, ozone and PM2.5, for 

which causal associations with health outcomes have been clearly established and to 

disseminate these estimates directly to a wide range of stakeholders.  As discussed 

by Talbot and Haley (Annex B5), local analyses may be valuable for a range of other 

research and surveillance goals, such as developing or testing novel hypotheses 

about the interaction of air pollution and weather (Ito et al.2007) or studying the 

impact of a unique local event (Friedman et al. 2001).   
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the tracking program, the EPA has explored the use of the HB 
estimates in case-crossover analyses of acute effects of PM2.5 and O3 

on hospitalizations (Boothe et al., 2005; Annex B5). Further validation 
and methodologic study is needed to understand the value of these 

statistical estimates in analyses to generate local CR functions.   
 
Several previous studies have addressed the means for assigning air 

pollutant exposures for a population in a local analysis and the impact 
of exposure measurement error that occurs when using limited 

ambient monitoring or modeled data to estimate true population 
exposure (Zeger et al. 2000; Dominici et al. 2000; Meng et al. 2005; 
Sarnat et. al. 2007; Sheppard et al. 2008).  Fuentes (Annex B1) 

discusses the importance of quantifying exposure assessment error in 
local analyses and notes that this may be a substantial source of 

uncertainty for a HIA.  For locations with either limited or non-local 
pollutant monitoring or for locations using modeled pollutant estimates 
solely, this source of error may be especially pronounced relative to 

other potential error sources.   
 

Relatively few epidemiologic studies to date have actually attempted to 
adjust their results for measurement error in exposure, and methods 

that might be applicable in a tracking context have yet to be 
developed.  However, methodological studies indicate that it may be 
possible to develop an approach to predict the likely effect of exposure 

assessment error on an observed CR function for a given locality.  It 
has been shown, for example, that for analyses of short-term changes 

in pollutant levels and corresponding acute health impacts, exposure 
measurement error may bias point estimates of health impact toward 
the null and reduce precision, though the implications of measurement 

error depend on associations between ambient and personal 
concentrations and among measurement errors of co-pollutants (Zeger 

et al. 2000; Dominici et al. 2000; Sarnat et. al. 2007; Sheppard et al. 
2008).  One recent large scale study of short-term exposure and 
hospital admissions has implemented an approach based on 

regression-calibration (Peng R et al. 2008, Carroll RJ et al. 2006).   
 

In addition to methodological complexity, another barrier to routine 
implementation of adjustment for exposure assessment error is the 
limited availability of exposure assessment validation data comparing 

ambient monitor or model data with measured personal exposures for 
a population subset.  Since validation studies are often costly and 

time-consuming, it may be necessary to develop an approach for 
choosing validation results from studies conducted similar locations, 
similar to the approach for choosing an appropriate external CR 

function in the previous section. 
 

o Health outcome data Air quality has been linked to several health 
outcome measures including mortality from cardiovascular and 
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respiratory disease, hospitalization, and ED visits, as well as adverse 
birth outcomes and defects.  Given the multiple sources of these 

health data within a locality (e.g., hospitals, clinics, insurance records) 
care is needed to ensure there is adequate coverage and a consistent 

degree of data quality across the sources.   
 

o Analytical methods for addressing uncertainty in local analyses 

Sources of uncertainty within local analyses may exist in the exposure 
assignment, health outcomes recording, or generation of the CR 

function.  To address such uncertainty, several multi-stage methods 
that incorporate information across space and time, including 
hierarchical Bayesian  approaches, are acceptable for pooling evidence 

from local analyses.  Generating shrunken CR estimates of risk using 
pooled observations were cited as a means of reducing model 

uncertainty in a local analysis, especially for locations with limited local 
data.  Various methods are discussed more fully by Fuentes (Annexes 
B1 and D6).  Multi-stage modeling may be applied to estimating 

exposures as well as generating local CR functions.  A strategy that 
shares full information on local distribution of modeled input and 

outputs (e.g., ambient concentrations, local characteristics), not just 
summary statistics, can enhance pooled analyses.  The use of full 

distributional information for estimating local exposures can be used to 
reduce as well as communicate the levels of uncertainty to 
stakeholders in the HIA results.  For example, if an improved estimate 

of a spatial correlation would substantially improve precision of a 
localized estimate, studies can be conducted to more accurately 

estimate the correlation. Ultimately, the feasibility of implementation 
in the context of EPHT may determine which method is most suitable. 

 

o Tracking key air pollution events    Unique local events can have 
an impact on local CR functions and in some cases provide natural 

experiments for testing hypotheses about local interventions 
(Friedman et al. 2001).  To anticipate such analyses EPHT programs 
could develop a ‘key events log’ describing changes affecting either 

pollutant levels or health outcomes.  These events can subsequently 
be used in multi-stage modeling approaches as a means of explaining 

observed uncertainty in the model parameters and local CR function.    
 

o Resources needed to conduct local analyses Despite the potential 

advantages of using local analyses to estimate air pollution-related 
health risks, the proposed approaches are analytically intensive.  A 

major barrier to near-term implementation of local analyses is that 
many states lack the resources of time, personnel and expertise 
needed to conduct these analyses.  Training, streamlined toolkits (e.g., 

the case-crossover software developed for EPHT), and a process for 
ongoing technical assistance and expert review of analyses are among 

the steps needed to address this barrier. 
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Implementation recommendations 
 

1. Routine local analyses to estimate CR functions for health impact 
estimates and tracking in the EPHT program should be undertaken in 

the context of an analytic plan and process that anticipates pooling 
local analyses using one or more acceptable methods described at this 
workshop. 

 
2. Whatever method is adopted for pooled analyses, provisions should be 

made for sharing full information on the local distributions of modeled 
input and outputs (e.g., ambient concentrations, local characteristic), 
not just summary measures.   

 
3. The CDC EPHT program should address the level of resources needed 

to generate locally derived CR functions before routine local analyses 
are implemented.  Substantial resources will be needed to support 
model development, use, promotion and oversight.  Recommended 

steps include: 
a. Assess EPHT program capacity for supporting the needed 

analyses. 
b. Evaluate models for government-academic partnerships to 

provide needed technical capacity. 
c. Develop training for data users.  These can both be in the form 

of workshops for state EPHT grantees and online resources for 

public stakeholders. 
d. Develop a streamlined toolkit for generating local CR functions.  

The case-crossover software developed by investigators working 
on the PHASE project serves as an example that could help 
attain method consistency (see Talbot et al. Annex B5).  The 

software should have detailed guidance documents and open 
source codes.  

e. Create a means for oversight of the modeling process. Oversight 
should exist, a priori, as well as for the output based on a peer 
or institutional review model.  Recommendations for modifying 

and revising the model toolkit should be a goal of the oversight 
process.  

 
4. A log of key local events that may impact air quality, relevant health 

outcomes, and/or local CR functions should be kept by states and 

made available nationally.  Such data could be used in pooled analyses 
as described above and could be a resource to identify opportunities 

for researchers to work with EPHT programs to test important 
hypotheses and evaluate interventions.   

 

5. Models for concentrations, exposures or CR should evolve.  Start with 
existing models, use multi-stage methods, evaluate with pilot data, 

and then adapt the models as indicated.   
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RECOMMENDATIONS ON COMMUNICATIONS ISSUES  
The National Environmental Public Health Tracking Network (EPHTN) 

seeks to inform and evaluate local pollution control efforts by providing 
stakeholders with timely and locally relevant information on the public health 

burden of PM and ozone. Developing an overall communications strategy is a 
critical task of the EPHTN, in no small part because a successful strategy will 
require coordination among many layers of public health and environmental 

health agencies and systems.  Communicating estimates of health impact 
generated by linking air quality data and health data, and the limitations 

associated with such estimates, will be a critical component of such a 
strategy.   
 

Methodological considerations 
 

o Choice of metrics to quantify and communicate health impacts. Air 
pollution health impact assessments at the state and sub-state levels 
should be a major focus of the EPHTN going forward.  There has been 

considerable US and international experience with such assessments, 
leading examples of which were discussed at the workshop (Annexes B2, 

B7, B8, D7, D8, D9, and D10).  These assessments have quantified health 
impacts of exposure to air pollution variously, in terms of numbers of 

attributable deaths and/or other adverse health outcomes, years of life 
lost (or saved), and loss (or gain) of healthy life expectancy. Which 
metric(s) best quantify the impacts of air pollution remains a controversial 

question among technical experts and policy makers (McMichael et al. 
1998; Brunekreef et al. 2007, Rabl 2005).    Various counterfactual or 

comparison scenarios have also been used, for example estimating the 
health impact of actual ambient pollution relative to a National Ambient 
Air Quality Standard, a proposed standard, or “naturally occurring 

background” levels of a pollutant.    
 

The range of audiences and uses of information from health impact 
assessments (Annex B6) further complicate the selection of health impact 
metrics. Although the US EPA has conducted message testing regarding 

health impact measures using lay audience focus groups (personal 
communication, Susan Stone, US EPA), further research and testing is 

needed to provide definitive answers.  
 
o Coordination of communication efforts among agencies. The 

workshop participants noted the importance of communication among 
different agencies responsible for tracking air quality and health impacts. 

Currently in the US, health impact assessments of exposure to air 
pollution are being carried out by agencies at different levels, including US 
EPA, CDC, states and municipalities.  It would be desirable to avoid, if 

possible, methodologic inconsistencies that could produce artifactual 
differences in impact estimates. At a minimum, CDC and Tracking 

Program participants will need to be able to explain why estimates 
produced by different agencies and at different times differ.  There will 
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also be different layers of data that will need interpretation.  Metadata 
should be used but may also need interpretive messages for audiences to 

fully understand.  A good example might be the health impact statements 
EPA provides with the Ambient Air Quality Standard.   

 
o Communicating uncertainty in health impact assessments The 

EPHTN will produce state and sub-state level estimates of exposure to air 

pollution as well as estimates of the health impacts of such exposures.  
Providing a complete and “honest” account of the uncertainties in those 

estimates is critical to the overall transparency and credibility of the 
tracking network’s results, but presents considerable challenges for 
communicating both the extent of the uncertainties, and their 

implications.  Both types of estimates, even if carefully made with state-
of-the–art methods, will be subject to uncertainty from various sources, 

as discussed above and in working papers prepared for this workshop 
(Annexes B1 and B2).  In many air pollution health impact assessments 
the results have been presented simply as a point estimate of the number 

of deaths attributable to exposure, along with a confidence interval that 
reflects only the precision of the relative risk used to calculate the 

attributable number.  Other sources of uncertainty, such those 
contributed by the exposure assessment methods, have often not been 

taken into account.  
 

Fortunately, an increasing number of recent assessments have begun to 

present more complete estimates of uncertainty, using sensitivity 
analyses, or more complex statistical approaches to calculate an 

uncertainty distribution that simultaneously quantifies the contribution of 
several sources (Cohen et al. 2004; National Research Council 2002).   
 

Although there now exists a high degree of confidence regarding the 
adverse health effects of air pollution, workshop participants felt that 

messages about these effects should also inform the public about any 
relevant uncertainties. There is a considerable body of experience about 
the communication to diverse audiences of uncertainties in risk 

assessments of air pollution and other health hazards, including the 
European APHEIS project (Annex B7). In addition, CDC and state health 

departments have considerable experience with communicating 
uncertainty about a wide range of health and environmental concerns.  
What is lacking is organized knowledge about the communication of 

uncertainty as it applies to the effect and impact estimates that will be 
generated by the EPHTN.   

 
o Communicating uncertainty in comparisons by locale and time 

period The EPHTN will ultimately feature health effect and impact 

estimates from various locales and time periods, making possible the 
comparison of different locales at one or more points in time.  The 

workshop noted that the Tracking Program must devote additional 
attention to communicating the uncertainties in such comparisons, which 
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pose unique problems, both scientific and political, with regard to 
differences that might be observed, and the potential misinterpretation of 

explicit or implicit rankings (Annexes B6 and D4).  The workshop 
discussed options including comparison of each locale to a common 

standard, and graphical approaches such as those used by APHEIS (B7), 
but concluded that further focused methodologic work was needed. 

 

o Integrating health impact information into an overall 
communication strategy Whenever air pollution information is 

communicated to stakeholders, questions about population health impacts 
should be anticipated.  A network of tracking programs prepared to 
disseminate credible, locally relevant information on health impacts can 

take advantage of such ‘teachable moments’.   
 

For example, some air pollution exposure indicators being developed for 
the EPHTN reference the NAAQS.  For geographic areas where ambient 
pollution does not exceed that NAAQS, stakeholders may incorrectly 

conclude that air pollution has no public health impact in their locale and 
that no public health rationale exists for further improvements.  

 
Significant and newsworthy events that affect air quality, such as major 

structural or natural fires, unusual weather events, or traffic mitigation 
measures, such as those implemented during the Atlanta Olympics 
represent another opportunity to inform stakeholders about local air 

quality impacts on public health.  Planned observance days such as 
National Air Quality Week or Earth Day can provide opportunities to 

incorporate health impact information into air quality messages. 
 
Implementation Recommendations 

1. A well-developed communication strategy about health effects and 
impacts of air pollution, coordinated with other relevant agencies 

such as US EPA, should be an integral part of the EPHT. 
2. Appropriate risk communication strategies should be incorporated 

where possible.  These should take into account the perspectives 

and background knowledge of the various stakeholders.  
3. The Tracking Program should review the current experience and 

research evidence, such as that developed by the US EPA (personal 
communication, Susan Stone, US EPA) and other evidence 
summarized in Annex B6, with regard to choice of air pollution 

health impact metrics and their communication in order to: 1) 
achieve consensus on the best approaches for the EPHTN; and 2) 

identify critical knowledge gaps that could be addressed with 
additional research. 

4. Consensus approaches should be developed using a matrix format 

that identifies preferred health impact metrics based on audience 
type and intended use.  

5. The Tracking Program should work with US EPA to coordinate 
methodologic approaches for health impact assessment with the 
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goal of identifying and resolving major inconsistencies in 
methodology. 

6. The Tracking Program should plan ongoing evaluation of its 
communication efforts to assess reach, usefulness, and impact. 

7. The Tracking Program should review the current experience with 
regard to efforts to communicate uncertainty in estimates of health 
effects and health impact assessments of environmental hazards, 

with the goals of: 1) achieving consensus on the best approaches 
for the EPHTN; and 2) identifying critical knowledge gaps that could 

be addressed with additional research. 
8. Candidate approaches for communication of uncertainty should 

then be tested with diverse audiences representing major 

stakeholder groups. 
9. The Tracking Program should support the development of methods 

for communicating the results of comparisons between locales and 
their uncertainties.   
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GLOSSARY  
 

Health impact assessment (HIA)- “A combination of procedures, 
methods, and tools by which a policy, program, or project may be judged as 

to its potential effects on the health of a population, and the distribution of 
those effects within the population.”3  In some cases of HIA for air pollution, 
the impact of current ambient air pollution levels relative to a counter factual 

air pollution scenario is estimated.  In this case, the goal may be to evaluate 
the potential benefits of achieving a proposed air quality standard, or more 

generally a hypothetical improvement in air quality, without specifying the 
particular measures needed to achieve the improvement.  
 

Health impact tracking - Ongoing, periodic estimation of health impacts 
over time.   

 
Environmental Public Health Tracking (EPHT)- ‘The ongoing collection, 
integration, analysis, and dissemination of data from environmental hazard 

monitoring, human exposure tracking, and health effect surveillance’.4 
 

Environmental Public Health Tracking Network - A web-based 
distributed network being developed to provide for access and exchange of 

environmental data, health data, and tools for data analysis and 
visualization. 
 

Environmental Public Health Tracking Program – A U.S. Centers for 
Disease Control and Prevention program the goals of which are to ‘1) build a 

sustainable national EPHT network, increase state and local EPHT capacity, 
(3) disseminate credible information, (4) advance environmental public 
health science and research, and (5) bridge the gap between public health 

and the environment.’  The program advances its goals by providing grants 
to state and local health departments and schools of public health, by 

evaluating data sources and developing model data systems, and by 
fostering collaboration and partnerships among environmental agencies, 
health agencies, nongovernmental organizations and communities. 

 
Concentration-response (CR) function - In the context of air pollution 

HIA, the CR function is a mathematical expression describing an estimated 
relationship between the ambient concentration of a specified air pollutant 
and the occurrence rate of a specified health outcome. 

 

                                                 
3 http://www.euro.who.int/document/PAE/Gothenburgpaper.pdf 

 
4  McGeehin MA, Qualters JR, Niskar AS. National Environmental Public Health 

Tracking Program: Bridging the Information Gap.  

http://www.ehponline.org/members/2004/7144/7144.html 
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Counter-factual air pollution scenario - A hypothetical distribution of the 
concentrations of an ambient air pollutant being compared to actual or 

estimated levels.  The hypothetical distribution might describe air pollutant 
levels meeting a proposed standard, resulting from a specified program or 

policy action, or some other hypothetical scenario, such as pollution at 
naturally occurring background levels.  The difference between the 
occurrence of a specific health outcome currently and that estimated to occur 

under the counter-factual scenario comprises the health impact estimate. 
 

APHEIS – Air Pollution and Health and European Information System  
A program funded by the European Commission in which governmental and 
research institutions across Europe collaborated to produce and disseminate 

estimates of the health impacts of air pollution to a range of stakeholders 
and policy makers.   

 
Environmental health indicator - ‘An environmental public health indicator 
(EPHI) provides information about a population's health status with respect 

to environmental factors. It can be used to assess health or a factor 
associated with health (i.e., risk factor, intervention) in a specified population 

through direct or indirect measures.’  Indicators may reflect environmental 
hazards, exposures, health effects, or interventions. 5 

 
Linked indicator - In the context of EPHT, a linked indicator is an 
environmental health indicator that is derived from linked environmental and 

health data.  For air pollution health effects tracking, linked indicators refer 
to measures of population health effect attributable to ambient pollution. 

  

                                                 
5 http://www.cdc.gov/nceh/indicators/description.htm 
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Statistical issues in health impact assessment at the

state and local levels 1

Montserrat Fuentes

Abstract

In this work we discuss the uncertainty in estimating the human health risk due to

exposure to air pollution, including personal and population average exposure error,

epidemiological designs and methods of analysis. Different epidemiological models

may lead to very different conclusions for the same set of data. Thus, evaluation of

the assumptions made and sensitivity analysis are necessary.

Short-term health impact indicators may be calculated using concentration-response

(C-R) functions. We discuss different methods to combine C-R function estimates from

a given locale and time period with the larger body of evidence from other locales and

periods and with the literature. A shrunken method is recommended to combine C-R

function estimates from multiple-locales. This shrunken estimate includes information

from the overall and the local estimates, and thus it characterizes the estimated excess

of risk due to heterogeneity between the different locations.

1 Introduction

In this manuscript we discuss relevant statistical issues in establishing the impact on hu-

man health of exposure to ozone, particulate matter and other pollutants at the state and

local levels. A typical analysis consists of two stages, (1) exposure assessment and (2) epi-

demiological analysis relating exposure to the health outcome. We start with the exposure

assessment in Section 2. In this section we discuss different approaches to estimate pollution

exposure including: the use of monitoring data, spatial statistical interpolation methods,

1M. Fuentes is an associate professor at the Department of Statistics in NCSU. (Email:
fuentes@ncsu.edu).
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air quality numerical models, satellite data and probabilistic exposure models. We discuss

advantages and limitations of each one of the approaches, and we end this section with a

discussion of uncertainty in the exposure assessment.

In Section 3 and 4 we discuss health outcome analyses. In Section 3, we introduce two

complementary statistical methods for risk assessment: a time-series based approach and a

case-crossover design, which are equivalent approaches under some assumptions. We present

uncertainty analysis for both frameworks.

In Section 4, we introduce different approaches for local concentration-response func-

tion analysis: local regression analysis, adjusted estimates using external C-R functions,

shrunken approaches, and full Bayesian methods. We discuss uncertainty analysis for the

C-R function.

2 Exposure assessment

Epidemiologic studies typically assess the health impacts of particulate matter and ozone

using ambient concentrations measured at a centrally-located monitoring site, or at several

sites located across the study area, to reflect exposures for their study population. The

ability of these ambient concentrations to reflect actual pollution exposures for the study

population generally depends on several factors, including the spatial distribution of the

ambient air pollutants and the activity and home ventilation patterns for the study com-

munity.

One method to link personal exposure to ambient levels, and thus to the association

between air pollution and the health endpoints, is to model exposure by simulating the

movement of individuals through time and space and estimate their exposure to a given

pollutant in indoor, outdoor, and vehicular microenvironments. The exposure model devel-

oped by the U.S. Environmental Protection Agency (EPA) to estimate human population

exposure to particulate matter is called Stochastic Human Exposure and Dose Simulation

(SHEDS-PM) (Burke, 2005) and the stochastic model for ozone is called Air Pollutants Ex-
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posure (APEX). They are both probabilistic models designed to account for the numerous

sources of variability that affect people’s exposures, including human activity. Daily activity

patterns for individuals in a study area, an input to APEX and SHEDS, are obtained from

detailed diaries that are compiled in the Consolidated Human Activity Database (CHAD)

(McCurdy et al., 2000; EPA 2002). Although SHEDS and APEX can be valuable tools, hu-

man exposure simulation models, introduce their own uncertainties, and such models need

to be further evaluated and their uncertainties characterized.

Most of the previous analyses of particulate matter (PM) health effects have been con-

ducted in urban areas; very little is known about rural PM-related health effects. One

reason for this is that monitoring data are sparse across space and time. For ozone, we

lack of information for the winter months, since most monitoring stations only operate from

May to September. Thus, EPA in collaboration with the Centers for Disease Control and

Prevention (CDC), and three state public health agencies (New York, Maine, and Wis-

consin) are working together on the Public Health Air Surveillance Evaluation (PHASE)

project to identify different spatial-temporal interpolation tools that can be used to gener-

ate daily surrogate measures of exposure to ambient air pollution and relate those measure

to available public health data. As part of the PHASE project, EPA is using statistical

techniques (e.g. Kriging, see Cressie, 1993) to interpolate monitoring data at locations and

times for which we do not have observations. EPA is also supplementing monitoring data

with satellite data and atmospheric deterministic models (e.g., Community Multiscale Air

Quality (CMAQ) models). These models run by EPA provide hourly air pollution concen-

trations and fluxes at regular grids in the U.S.. CMAQ uses as inputs meteorological data,

emissions data and boundary values of air pollution (Binkowski and Roselle, 2003; Byun

and Schere, 2006). These air quality numerical models provide areal pollution estimates,

rather than spatial point estimates. Thus, we have a change of support problem (see e.g.

Gotway and Young, 2002), since monitoring data and numerical models do not have the

same spatial resolution. EPA in the PHASE project has adopted a hierarchical Bayesian

(HB) spatial-temporal model to fuse monitoring data with CMAQ, using sound statistical
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principles (McMillan et al., 2007). The Bayesian approach provides a natural framework

for combining data (see Fuentes and Raftery, 2005), and it relays on prior distributions for

different parameters in the statistical model. The prior distributions could be space depen-

dent and also substance dependent. So, it is important to use this framework with caution

when applied to different geographic domains and different air pollutants. The potential

bias in the pollution estimates as a result of the change of support problem is not taken into

account in the PHASE project due to the computational burden. This might not cause a

significant impact on the estimated exposure when the air quality numerical models are run

at a high spatial resolution (i.e. grid cells of 4km× 4km). However, when CMAQ is run at

a coarse resolution (e.g. grid cells of 36km × 36km), the change of support problem could

result in biased exposure estimates.

The final product of the HB approach adopted in the PHASE project is a joint distribution

of the concentrations of pollution across space and time. Since this distribution is likely to

be non-Normal, just the mean of the distribution at each location and time is not necessarily

a good summary. Alternative summaries should be considered, such as different percentiles.

Ideally, one would like to work with simulated values from the distribution rather than just

a summary of the distribution, because that way we could characterize the uncertainty in

the exposure when conducting the risk assessment. This will be discussed in Section 4.

2.1 Uncertainty in the exposure assessment

The use of statistical models (e.g. kriging), air quality numerical models (e.g. CMAQ), or

exposure models (APEX, SHEDS) to help characterizing exposure to ozone and particulate

matter adds more sources of uncertainty to the human health risk assessment estimates,

because these models have their own uncertainties. However, the air quality models can

be valuable and a powerful tool to extend the concentration-response (C-R) function anal-

ysis to the national level and also for the times in which not enough monitoring data are

available. The air quality models, based on the dynamics and mechanics of atmospheric

processes, typically provide information at higher temporal and spatial resolution than data
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from observational networks. Errors and biases in these deterministic models are inevitable

due to simplified or neglected physical processes or mathematical approximations used in

the physical parameterization. The exposure models can be considered a powerful to char-

acterize the exposures of the study population by taking into account human activities. The

different sources of error and uncertainties in the exposure models (SHEDS, APEX) result

from variability not modeled or modeled incorrectly, erroneous or uncertain inputs, errors in

coding, simplifications of physical, chemical and biological processes to form the conceptual

models, and flaws in the conceptual model. In particular, the uncertainty in the estimation

of ambient air quality will be propagated by APEX and SHEDS. The APEX and SHEDS

output could be also very sensitive to the uncertainty in the prior distributions used in the

microenvironmental models. Evaluation of these air quality and exposure models would

help to quantify and characterized the different sources of errors in the models.

In some cases, presenting results from a small number of model scenarios would provide an

adequate uncertainty analysis for the air quality and exposure models (e.g. when insufficient

information is available). In most situations, probabilistic methods would be necessary to

characterize properly at least some uncertainties, and also to communicate clearly the overall

uncertainties. Although a full Bayesian analysis that incorporates all sources of information

may be desirable in principle, in practice, it will be necessary to make strategic choices about

which sources of uncertainty justify such treatment and which sources are better handled

through less formal means, such as consideration of how model outputs might change as

some of the inputs vary through a range of plausible values.

These different sources of uncertainty in the estimated exposure due to the use of different

interpolation techniques need to be taken into account when estimating the C-R function.

When using a Bayesian approach to estimate the expose (e.g. HB-PHASE approach), the

uncertainty in the exposure to some degree is characterized by the joint distribution of the

exposure values. To the extend that is computationally feasible, the risk assessment should

be conducted using the joint distribution of the exposure values rather than just means from

that distribution.
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Sensitivity analysis should be conducted to understand the impact of the uncertainty

in the exposure estimates on the risk assessment, since it could result in over or under

estimation of the risk.

3 Risk assessment

Time series analysis is a commonly-used technique for assessing the association between

counts of health events over time and exposure to ambient air pollution. The case-crossover

design is an alternative method, that uses cases only, and compares exposures just prior

to the event times to exposures at comparable control, or referent times, in order to assess

the effect of short-term exposure on the risk of a rare event (see Janes et al., 2004). Each

technique has advantages and disadvantages (see Fung et al., 2003). The PHASE team has

selected case-crossover rather than time-series analysis due to the shorter learning curve

(easier to use), and because within one analysis the method can accommodate many time-

series. It is important to keep in mind that the case-crossover design is equivalent to a

Poisson regression analysis except that confounding is controlled for by design (matching)

instead of in the regression model. Restricting referents to the same day of week and season

as the index time controls for these confounding effects by design. Accurate estimates can

be achieved with both methods. However, both methods require some decisions to be made

by the researcher during the course of the analysis.

In modelling time series of adverse health outcomes and air pollution exposure, it is

important to model the strong temporal trends present in the data due to seasonality,

influenza, weather and calendar events. Recently, rigorous statistical time series modelling

approaches have been used to better control for these potential confounders. Furthermore,

sophisticated analytical techniques have been introduced to adjust for seasonal trends in the

data, culminating in the introduction of the generalized additive model (GAM). Although

temporal trends can be explicitly included in the model, nonparametric local smoothing

methods (LOESS) based on the GAM were widely used to take into account such trends in
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the analysis. Dominici et al. (2002b) suggested another approach using parametric natural

cubic splines in the GAM model instead of the LOESS. One of the main limitations of this

type of time series modelling approach is that it is necessary to choose the time span in the

LOESS smoothing process, or the degrees of freedom of the cubic splines, and the results

can be very sensitive to how that is done.

The case-crossover design compares exposures at the time of the event (i.e. hospital ad-

mission) with one or more periods when the event is not triggered. Cases serve as their

own controls. The excess risk is then evaluated using a pair-matched design and condi-

tional logistic regression analysis. Proper selection of referents is crucial with air pollution

exposures, because of the seasonality and long term time trend. Careful referent selection

is important to control for time-varying confounders, and to ensure that the distribution of

exposure is constant across referent times, which is the main assumption of this method.

Distinct from confounding there is another concern regarding time trend in the exposure

series. If there is a long-term time trend, choosing referents only prior to the index day may

lead to bias. Different strategies, such as bidirectional referent selection (choosing referents

both before and after the index time) (Navidi, 1998) have been proposed to reduce the bias.

3.1 Uncertainty in the risk assessment

For any risk assessment conducted based on a Poisson time series or a case-crossover de-

sign is important to verify the model assumptions and to evaluate the model performance.

Thus, there is need to assess the performance of the different variations of time series and

case-crossover procedures to establish associations between air pollution and human health.

Sensitivity analysis of the time series procedure to the statistical representation of the con-

founding effects need to be conducted. In particular, the sensitivity of the results with

respect to the co-pollutants introduced in the model, the time span used in the LOESS

smoothing process, and to the degrees of freedom when choosing cubic splines need to be

determined. For the case-crossover studies using bi-directional control selection, sensitivity

analysis regarding the choice of time interval need to be conducted.

7

ANNEX B



4 Estimation of the C-R function

Short-term health impact indicators can be calculated using concentration-response (C-R)

functions. A C-R function summarizes the associations between various measures of air

pollution and the health outcome. Questions remain about the shape of those associations.

Local C-R functions can be obtained from case-crossover or time series analysis using local

information. However, since there is usually limited data for each location, pooling infor-

mation across similar regions may improve local C-R estimates. A local analysis ignores

information from other locations/periods, and could result in a less accurate estimate of

the C-R local function. There is a precedent for use of methods that combine a local C-R

function analysis with C-R functions from other locations and times, for example, Post et

al. 2001, Trete et al., 2005, Dominici et al. 2002a, and Fuentes et al. 2006. We discuss

in this section these different approaches to estimate local C-R functions. We start with

simple local regression approaches, then we introduce external C-R functions, the next ap-

proach would be the use of shrunken estimates (empirical Bayes) and finally the use of Full

Bayesian approaches. The degree of statistical training and the computational challenges

increase as move along this list from the local regression to the Bayesian approaches. While

Bayesian approaches are recommended because they characterize better different sources

of uncertainty, depending on the resources one would have to make a decision about what

method to use. The purpose of this Section is to highlight the advantages and limitations

of each approach.

The C-R function assumed in most epidemiological studies on health effects of particulate

matter (PM), ozone and other ambient pollutants, is exponential: y = Beβx, where x is the

exposure level, y is the incidence of mortality (or other adverse health outcome) at level

x, β is the coefficient of the environmental stressor, and B is the incidence at x = 0 when

there is no exposure). In these epidemiological models at the local or state level, we assume

that the counts of the health outcome come from a Poisson process. Thus, we have,

ln(E(yc
t )) = βcP c

t + ηcXc
t (1)
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where E(yc
t ) represents the mean counts of the health outcome in the subdomain c on day

t, P c
t are the daily levels of the environmental stressors at location c and day t, βc is the

parameter to be estimated, which is the coefficient multiplying the environmental stressor.

The log relative risk (RR) parameter is usually defined as βc ∗ 103. X t
c is the vector of the

confounding factors (e.g. seasonality, weather variables, influenza and calendar events) and

ηc is the corresponding vector of coefficients. The confounder term in this model is often

replaced with a smooth function of the covariates (e.g. splines).

Local estimates

Local estimates of βc can be obtained at each location c separately, using a regression

technique applied to model (1). Local regression would allow for more local covariate control.

However, the evidence across different locations is ignored.

Adjusted estimates (external C-R function)

Local estimates can be combined using a random effects model, by regressing the local

estimates against potential effect modifiers. The model assumptions are:

β̂c ∼ N(μc, S2
W,c),

μc ∼ N(αZc, σ2
B).

If we ignore the potential variability within location c of the effect modifiers αZc, we have

β̂c ∼ N(αZc, S2
W,c + σ2

B)

β̂c is the estimated effect of P in location c, S2
W,c is the estimated within location c variance,

and σ2
B, is the between locations variance. β̂c and S2

W,c are obtained from the local regression

analysis. The between locations variance, σ2
B, is usually estimated with the maximum

likelihood estimate, using an iterative approach.

The random-effects pooled estimate is a weighted average of the location-specific β̂c. The

weights involve both the sampling error (the within-location variability) and the estimate

9
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of σ2
B, the variance of the underlying distribution of μc (the between-location variability).

Shrunken estimates

An alternative to the local estimates and to the overall (pooled random effects) estimate

is obtained using the local shrunken estimates. The model assumptions are:

β̂c ∼ N(μc, S2
W,c)

μc ∼ N(β̃, σ2
B) (2)

where S2
W,c is the estimated within-location variance and obtained in a first-stage local anal-

ysis as the squared standard error (SE) from the local regression model, β̂c is the Maximum

likelihood (ML) estimate from the local regression. β̃ is the overall pooled estimate, and σ2
B

is the between-location variance (treated as known, and obtained in a first-stage analysis

using a maximum-likelihood approach).

Then, we can obtain the following conditional distribution:

μc|β̂c, β̃, S2
W,c, σ

2
B ∼ N(

S2
W,c

S2
W,c + σ2

B

β̃ +
σ2

B

S2
W,c + σ2

B

β̂c,
S2

W,cσ
2
B

S2
W,c + σ2

B

),

this is called the posterior probability distribution of μc. The mean of this posterior distri-

bution is also called the shrunken estimate of βc. The variance of the shrunken estimate

is
S2

W,cσ2
B

S2
W,c+σ2

B
, which is clearly smaller than S2

W,c, the variance of our local regression estimate,

because by introducing the spatial information we are able to reduce the variability of our

risk estimate. This shrunken estimate includes information from the overall and the local

estimates, and thus it characterizes the estimated excess of risk due to heterogeneity be-

tween the different locations. In the presence of heterogeneity, location-specific estimates

vary regarding the overall effect estimate for two reasons: a) the true heterogeneity in the

estimates, and b) additional stochastic error. A location-specific estimate reflects the first

source of variation but not the second one. The use of shrunken estimates allows reduction

of the stochastic variability of the local estimates. This shrunken method is an empiri-
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cal Bayesian method, because β̂c, β̃, and the within and between variance parameters, are

treated as known, and therefore the uncertainty about these parameters is not taken into

account in the analysis. This could lead to underestimation of the variance associated to

the log relative risk parameter.

Effect modifiers (external C-R function), αZc, could be also easily introduced in this

empirical Bayes framework, by replacing in our model β̃ with αZc.

Full Bayesian approach

A full Bayesian approach is an extension of the shrunken method, to characterize the

uncertainty in the pooled estimate, β̃, and the within location estimate, β̂c, when obtaining

the final estimate of the effect of the environmental stressor at a given location. Thus,

rather than treating β̃ and σ2
B as known, they are modelled as random effects that are

jointly estimated at all locations. This would just a one way random effects model which is

easy to fit.

A Bayesian multi-stage framework would allow to characterize the spatial dependency

structure of the relative risk parameter, by treating βc as a spatial stochastic process (Fuentes

et al, 2006). Lee and Shaddick (2007) smoothed the risk across time. However, this spa-

tial/temporal analysis is usually highly dimensional, and the computational demand of a

full Bayesian approach can be extremely laborious. The computation is often simplified by

using empirical Bayes alternatives, such as the shrunken estimate.

5 Uncertainty in the C-R function

Concentration-response functions, established by the epidemiological models, play a crucial

role in the estimation of the risk associated to different pollutants. Uncertainty in the C-R

function may impact conclusions. As described in the previous section, some of the formal

approaches for uncertainty analysis in epidemiological models, include Bayesian analysis

and Monte Carlo analysis.
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To deal with epidemiological model uncertainty, it is possible to compare alternative

models, but not combine them, weight predictions of alternative models (e.g. probability

trees), and/or the use meta-models that degenerate into alternative models. For comparison

of different models to estimate the C-R function, we recommend to use statistical information

criteria, that have traditionally played an important role in model selection. The basic

principle of model selection using information criteria is to select statistical models that

simplify the description of the data and model. Specifically, information methods emphasize

minimizing the amount of information required to express the data and the model. This

results in the selection of models that are the most parsimonious or efficient representations

of observed phenomena. Some of the commonly used information criteria are: AIC (Akaike

information criterion, Akaike, 1973, 1978), BIC (Bayesian information criterion, also known

as the Schwarz criterion, Schwarz, 1978), RIC (Risk inflation criterion, Foster and George,

1994), deviance information criterion (DIC), which is a generalization of the AIC and BIC.

The DIC is particularly useful in Bayesian model selection problems where the posterior

distributions of the models have been obtained by Markov chain Monte Carlo (MCMC)

simulation. These criteria allow to describe the level of uncertainty due to model selection,

and can be used to combine inferences by averaging over a wider class of models (meta-

analysis) using readily available summary statistics from standard model fitting programs.

Sensitivity analyses need to be conducted to understand the sensitivity of results to the

assumed shape of the concentration-response function and to other model assumptions; in

particular to the role of confounders, demographic factors, co-pollutants, the structure of

the cessation lag, and sensitivity of the premature mortality estimate (or other endpoints)

to the presence of a potential threshold.

There are also uncertainties associated with the environmental stressor, and reliability

of the limited ambient monitoring data in reflecting actual exposures (as discussed in the

exposure assessment section). These uncertainties would propagate to the epidemiological

model, so it is important a good characterization of uncertainties in the exposure assessment.

The ability to quantify and propagate uncertainty is still an area in development. Using a

12

ANNEX B



hierarchical framework would help quantify uncertainties, the fitting can be done stage-by-

stage, taking the interim posteriors from one stage as the priors for the next. Within each

stage a fully Bayesian approach can be used to get the interim posterior distributions. As the

implementation is based on the sequential version of the Bayes theorem, the corresponding

model uncertainties will be captured at the final stage of the hierarchical model. The HB-

PHASE framework to obtain exposures fits naturally within this multi-stage approach, by

treating the exposure distributions obtained from the HB approach as priors in the next

stage, in which we estimate the RR. However, this can be computationally demanding.

Uncertainty analysis has certainly developed further and faster than our ability to use

the tools in decision-making. Effective uncertainty communication requires a high level

of interaction with the relevant decision makers to ensure that they have the necessary

information about the nature and sources of uncertainty and their consequences.
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I. Introduction 

 

One of the principal objectives of a local scale health impact assessment is to provide a highly 

resolved estimate of the magnitude and spatial heterogeneity of the health impacts expected to occur as a 

result of air quality changes at a local level. This type of assessment utilizes many of the same methods 

applied to the traditional national scale analysis and adapts them for the local area of interest. Such an 

assessment is clearly of significant analytical value. However, moving from the national to the local scale 

poses special challenges. Namely, the input data for the local assessment must be highly refined. Local 

scale assessments also entail unique uncertainties. This paper explores these methodological issues by 

detailing both the data requirements for performing a local-scale assessment compared to the traditional 

national assessment and the tradeoffs that analysts must weigh when performing local scale assessments.  

In contrast with local scale assessments, there is an extensive history of national health benefits 

assessments of major air pollution regulations in the United States. For example, the U.S. Environmental 

Protection Agency (EPA) has regularly performed national scale benefits assessments. In one such 

analysis it estimated that implementation of the Clean Air Act amendments would result in approximately 

23,000 premature deaths avoided in 2010, relative to a baseline of Clean Air Act implementation without 

the amendments (U.S. EPA, 1999). More recently, EPA has systematized this approach by developing the 

Environmental Benefits Mapping and Analysis Program (BenMAP) for estimating national health 

benefits. BenMAP was used in recent Regulatory Impact Analyses (RIAs) of the Clean Air Interstate Rule 

and Nonroad Diesel Rule (U.S. EPA, 2004, 2005), finding that, when fully implemented, those two rules 

alone would result in close to 30,000 premature deaths from air pollution avoided annually. The general 

approach utilized within these analyses has been found to be reasonable and informative for policy 

decision-making in spite of inherent uncertainties (NRC, 2002).  

In recent years, interest has grown in developing similar types of health impact analyses at a sub-

national or local level (considered herein to be city-scale). For example, multiple studies have quantified 

the public health benefits associated with pollution controls at specific power plants, including detailed 

characterization of the spatial patterns of benefits (Levy et al., 1999; Levy and Spengler, 2002; Levy et 

al., 2002a). BenMAP analyses have been conducted to address a variety of risk management questions in 

Philadelphia, Detroit, California, Georgia, Minnesota, and for the Lake Michigan Air Directors 

Consortium (LADCO)
1
. The spatial distribution of demographic characteristics of the population, the 

estimated population exposure patterns, and disease patterns —all key inputs to the benefits assessment—

may vary significantly within a given urban area. In general, as the spatial scale decreases, national or 

“generic” data may become less representative, but at the same time, local data may not be available or 

may be more uncertain given smaller sample sizes.   

The decision to pursue a local scale health impact assessment rather than a national scale 

assessment is clearly linked to the policy objective, but the reliability and interpretability of a local 

                                                 
1
 A list of links to these local scale analyses is provided at the end of this paper. 
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analysis depend on a number of analytical inputs.  As we detail in this paper, a defensible local health 

impact assessment requires robust and representative data on air quality, populations, baseline incidence 

rates of health outcomes of interest, and concentration-response relationships relating exposure and health 

outcomes (Figure 1).  In addition, there is a tension between developing assessments that are locally 

meaningful and using methods that are consistent with other health impact assessments, so that results can 

be compared across settings.  Finally, if health impact assessments are to be conducted on a regular basis, 

the health impact assessment methodology should provide a mechanism for collection and use of 

regularly updated data and concentration-response functions. 

This paper explores each of these issues in depth.  In section 2, we provide a brief conceptual 

overview of national health impact assessment methods.  In section 3, we discuss critical data issues that 

must be addressed when scaling health impact assessments down from the national to local level.  In 

section 4, we discuss the need to consider the influence of time-varying factors in developing and 

applying impact functions across multiple years in a local assessment.  In section 5, we discuss 

characterization of uncertainty.  Finally, in section 6, we conclude with some recommendations for the 

conduct of local scale health impact assessments. 

 

II. Overview of national scale health impact assessment methods 

  

The key elements of national scale health impact assessments (HIA) are illustrated in Figure 1, 

and include: 

 

1) Estimate a change in or increment of ambient air quality, using ambient air quality data 

(from ground-based or satellite measurements), modeled air quality, or a combination of 

the two. 

 

2) Combine air quality data with population information to determine changes in 

population-level potential exposure in a form that is relevant given the epidemiological 

evidence (e.g., the appropriate averaging time). 

 

3) Combine changes in population exposure to ambient air pollution with impact functions
2
 

to generate distributions of changes in the incidence of health effects.  The impact 

functions are constructed using population data, baseline health effect incidence and 

prevalence rates, and C-R functions. 

4) Characterize the results of the HIA, through the use of summary statistics (e.g. mean, 95 

percent confidence interval), graphs (e.g. cumulative distribution functions and box-

plots), and maps. 

 Health impact functions estimate the change in a health endpoint of interest, such as hospital 

admissions, for a given change in air pollution concentrations (here, considered to be either ambient 

ozone or particulate matter).  A typical health impact function might look like:   

                                                 
2
 The term “impact function” as used here refers to the combination of a) a C-R function obtained from the 

epidemiological literature, b) the baseline incidence estimate for the health effect of interest in the modeled 

population, and c) the size of that modeled population.  The impact function is distinct from the C-R function, which 

strictly refers to the estimated equation from the epidemiological study relating the relative risk of the health effect 

and ambient pollution.  We refer to the specific value of the relative risk or estimated coefficients in the 

epidemiological study as the “effect estimate” or “C-R function”.  In referencing the functions used to generate 

changes in incidence of health effects for this paper, we use the term “impact function”. 
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where y0 is the baseline incidence (the product of the baseline incidence rate times the potentially affected 

population), β is the effect estimate (C-R function), and ∆x is the estimated change in ambient 

concentrations.  There are other functional forms, but the basic elements remain the same.  

 

Identifying Health Outcomes of Interest 

 

An important initial step in an HIA is to consider which health outcomes to include in the 

analysis. Several types of data can support this determination, including toxicological studies (animal and 

cellular studies), human clinical trials, and observational epidemiology studies.  All of these data sources 

provide important contributions to the weight of evidence surrounding a particular health outcome; 

however, only epidemiology studies provide direct concentration-response relationships which can be 

used to evaluate population-level impacts of reductions in ambient pollution levels. The selection of a 

health outcome therefore follows a weight of evidence approach, based on the biological plausibility of 

effects, availability of C-R functions from well-conducted peer-reviewed epidemiological studies, 

cohesiveness of results across studies, and a focus on endpoints reflecting public health impacts (like 

hospital admissions) rather than physiological responses (such as Forced Expiratory Volume in one 

second (FEV1)).  Table 1 lists some of the health endpoints included in recent HIAs for ozone and PM.  

The quantitative aspect of HIA therefore relies on the outputs from environmental epidemiology. 

A downside is that standard epidemiological studies provide only a limited representation of the 

uncertainty associated with a specific C-R function, measuring only the statistical error in the estimates, 

usually relating to the power of the underlying study (driven largely by population size and the frequency 

of the outcome measure).  There are other sources of uncertainty in the relationships between ambient 

pollution and population level health outcomes, including model specification, potential confounding by 

factors that are both correlated with the health outcome and each other, and many other factors. Other 

study types may provide insight about these issues but are difficult to capture quantitatively. In recent 

years, expert elicitation methods have been used to integrate across various sources of data in developing 

C-R functions for RIAs, a topic discussed in greater detail in Section 5.   

 

Selecting Health Impact Functions 

 

For health outcomes for which multiple studies are available, criteria need to be developed to 

determine which studies are likely to provide the best estimates of impacts in the U.S., as well as how the 

estimates from these studies should be weighted and combined. These criteria may include consideration 

of whether the study was peer-reviewed, the match between the pollutant studied and the pollutant of 

interest, whether co-pollutant confounding was addressed, the study design and location, and 

characteristics of the study population, among other considerations. To account for the potential impacts 

of different health care systems or underlying health status of populations, it may make sense to give 

preference to U.S. studies over non-U.S. studies, although the relative importance of country-specific 

information may vary by health outcome (with health care utilization measures likely depending more on 

country characteristics than disease development).  

Table 2 is a summary table from the ozone NAAQS RIA (EPA, 2007) which demonstrates the 

complexity in the health impact estimates that can result from a national analysis.  First, it should be 

noted that EPA relied on multi-city studies or meta-analyses of the mortality literature, an alternative to 

selecting individual city estimates, but did not attempt to formally combine the evidence across these 

studies. The individual row estimates for mortality therefore reflect the variability in the effect estimates 

for ozone mortality across these studies.  Ranges within each column reflect the uncertainty in the ozone 

effect estimates as well as in the estimates of PM premature mortality impacts across the available effect 

∆ ∆y y e x= ⋅ −⋅

0 1( ) ,β  
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estimates for PM mortality. Similar characterization could be conducted for morbidity outcomes as well, 

although the existence of fewer studies makes it more difficult to fully encapsulate uncertainty.  

 

Identifying Baseline Incidence Rates 

 

Given the C-R functions for various health outcomes, the remainder of the impact function 

depends on baseline incidence and size of the modeled population. Baseline incidence rates are important 

because the effect estimate calculates a change in the health outcome relative to a baseline incidence rate 

for the health endpoint of interest. Some epidemiological studies examine the association between 

pollution levels and adverse health effects in a specific subpopulation, such as asthmatics or diabetics.  In 

these cases, it is necessary to develop not only baseline incidence rates, but also prevalence rates for the 

defining condition (e.g., asthma).  For both baseline incidence and prevalence data, age-specific rates are 

preferred where available.  Impact functions are applied to individual age groups and then summed over 

the relevant age range to provide an estimate of total population benefits. 

Health benefits are calculated by linking the impact function and the modeled changes in air 

pollution levels. The change in or increment of air quality is generally determined by either a policy 

scenario (e.g. implementation of SO2 emission controls at power plants) or a specific standard or target 

(e.g. reduce PM2.5 levels to the annual average standard of 15 µg/m
3
).  Air quality changes can be 

predicted using sophisticated air quality models such as EPA’s Community Multiscale Air Quality 

(CMAQ) model, or more simplified monitor rollback methods can be used to simulate just attaining 

different standards (see Hubbell, et al., 2005 for an example of the rollback methodology). The 

appropriate methodology, scale, and resolution of air quality assessment will depend on the problem 

context. 

 

Characterizing Changes in Incidence 

 

The characterization step includes a number of elements, as described above. One important issue 

involves whether to characterize mortality impacts as counts of premature deaths avoided (as shown in 

Table 2) or using other metrics such as life years lost or average life expectancy gained.  This latter 

measure has been used in European assessments, and requires some additional assumptions about the life 

expectancies of populations affected by PM (Holland and Pye, 2006).  Most HIA assume that deaths from 

PM occur at the same rate (proportional to baseline mortality) across all populations, so that standard life 

tables available from the Centers for Disease Control can be used to calculate life years lost and changes 

in life expectancy.  EPA provides estimates of life years lost in a separate cost-effectiveness analysis 

provided as an appendix to their Regulatory Impact Analysis (EPA, 2005; EPA, 2006). 

 

 

III. Analytical challenges to scaling down HIA from national to local levels 

 

Although health impact assessments are theoretically applicable at sub-national scales, multiple 

issues arise in developing any of the key inputs to a health impact assessment—the baseline incidence 

rates, health impact functions, or air quality data. As such, it would be inappropriate to assume that the 

local scale assessment is simply a more geographically discrete version of the national or regional 

assessment. Analysts must take special care to recognize how the sources of analytical uncertainty change 

as the scope shifts from the national to the local scale. The discussion below focuses on each facet of the 

health impact assessment, describes the tension between national-scale and local-scale data, and discusses 

how the role of local data in the analysis is affected by the shift in geographic scale.  

In general, the tension is captured in the continuum proposed within Figure 3 – in some cases, 

either limited local data will be available or the data will be less reliable (either because of statistical 

power issues or other concerns). In those cases, the evidence used in national-scale HIA may be directly 

applied, with minor modifications and acknowledged uncertainties. Increasing availability of local data 
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may provide refined incidence/prevalence data or insight about factors that could influence the relative 

risks from air pollution. At the far end of the continuum, sufficient local data may be available to provide 

site-specific epidemiology and other local data. More detail is provided in the discussion below for each 

input.  

 

Development of appropriate effect estimates 

 

 In most cases, local scale HIAs will need to rely on “off-the-shelf” information available from the 

epidemiological literature, given either a lack of local studies or the likelihood that such studies would not 

have adequate statistical power to allow the global literature to be ignored or downweighted. Broadly, 

there may be data from a sufficient number of cities or studies to be able to determine factors that explain 

variability in effect estimates across cities, or the literature may be inadequate to do so. In addition, there 

may be epidemiological studies conducted within the city of interest for the local HIA, or there may be no 

such studies.  

An overarching concern for a local HIA is the transferability of the C-R functions from the 

context in which they were generated to a specific analytical context.  For example, a study relating 

hospital admissions to ozone concentrations in New York City in 1980 might not be appropriate to 

directly apply to an analysis of ozone concentrations in Houston in 2007.  This is because a number of 

factors differ between the timeframe and location of the original analysis and the timeframe and location 

of the new analysis.  More specifically, the levels of other pollutants, the nature of the medical systems, 

population susceptibility to air pollution, population exposure and susceptibility to elevated temperatures, 

demographics (such as age), and exposure factors such as prevalence of air conditioning may all differ 

between 1980 New York and 2007 Houston.  Careful comparisons of those factors that might change the 

relationship between ambient pollutant concentrations and health outcomes should be conducted prior to 

selecting effect estimates for a particular location, as this will help determine whether evidence is 

applicable directly, applicable with modification, or inapplicable. 

When faced with a set of candidate effect estimates from a number of different cities, there are 

meta-analysis and pooling techniques which can be used to develop effect estimates that reflect potential 

heterogeneity in C-R functions across cities. Standard meta-analysis or pooling approaches involve 

weighting candidate studies by (for example) the inverse of their reported variance, providing a central 

estimate across the literature. An alternative to this approach uses random rather than fixed effects, which 

allows the possibility that the estimates from the different studies may in fact be estimates of different 

parameters, rather than just different estimates of a single underlying parameter. While these simple 

pooling approaches can provide better mean effect estimates for use in national scale analyses, they can 

lead to biased results when applied to local areas, because some of the variability in effect estimates 

between locations may be due to systematic factors influencing exposure, susceptibility, or other factors.  

In this case, more sophisticated meta-analysis approaches may be required. 

In recent years, several articles have been published that involve either meta-analyses or new 

multi-city studies for ozone (Stieb et al., 2002; Bell et al., 2004; Bell et al, 2005; Ito et al, 2005, Levy et 

al, 2005) and PM mortality (Levy et al., 2000; Stieb et al., 2002; Dominici et al., 2003; Franklin et al., 

2007). In addition to developing an overall mean effect estimate, some of these studies attempted to 

address heterogeneity in effect estimates across cities or studies by determining whether the effect 

estimates vary as a function of co-pollutant concentrations, temperature, air conditioning prevalence, and 

other factors.  Among other findings, locations with higher air conditioning prevalence appear to have a 

systematically smaller effect from ozone (Levy et al., 2005) and PM (Franklin et al., 2007). The 

implication of this for developing effect estimates for specific locations is that national mean estimates 

may need to be adjusted to account for local factors that are related to the effect estimate, although it 

should be recognized that the covariates in these meta-regressions may not necessarily be the causal 

factors driving the C-R functions.  

In general, multi-city analyses have some analytical advantages over multi-study meta-analyses, 

as they impose a consistent model specification, use the same time period for each city included, and are 
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more inclusive of locations, resulting in less chance of any publication bias. However, if the effect 

estimates are strongly influenced by model specification, single studies may be more likely to be biased 

than multi-study meta-analyses that may draw on multiple model specifications. Regardless, either type of 

study can provide city-specific estimates using hierarchical Bayes models, in which individual effect 

estimates for each city represent priors for those cities, but the posterior estimates represent a weighted 

average between those observations and the results from a pooling process or meta-regression. If a city-

specific estimate is highly uncertain and there is either little heterogeneity in the city-specific estimates or 

such heterogeneity can be explained by defined characteristics of the cities, then less weight is given to 

the city-specific observation. In contrast, if there is significant unexplained heterogeneity and the city-

specific estimates have good statistical power, then the city-specific estimates are given more weight. 

This approach recognizes that effect estimates from cities other than the one being evaluated within the 

HIA provide some insight about the appropriate estimate for the city being evaluated.  

Some of the key sources of potential heterogeneity in effect estimates between cities can be 

divided into two categories:  those having to do with differences in exposure, and those having to do with 

differences in potential susceptibility.  Because most epidemiology studies relate health outcomes to 

central site monitored concentrations rather than personal exposure, factors that affect the relationship 

between personal exposure and ambient concentrations can potentially affect the C-R function.  Some of 

these exposure-related factors include air conditioning prevalence and utilization, availability and 

effectiveness of air quality alerts, and amounts of time spent outdoors or in traffic. In addition, differences 

could be related to the relative levels of ambient pollution (e.g. how much ozone is in the air relative to 

PM) as well as the composition of PM (e.g. is the mass composed mainly of elemental carbon and 

sulfates, or is it composed of organics and nitrate?). Other air quality characteristics that may be important 

include the temporal profiles of pollution (e.g. is the area more affected by peaks or long-term elevated 

concentrations?). 

Other local characteristics that can affect C-R functions include population characteristics.  Most 

epidemiological studies focus on broad population groups.  As such, given differences in susceptibility 

across the population, differences in demographic factors and baseline health across cities can affect 

estimated C-R functions.  Some of these factors that have been identified in the literature include age, 

prevalence of heart and lung disease, education, income/poverty, access to health care, and asthma 

prevalence. 

In summary, given the likelihood that neither extreme on the continuum in Figure 3 (no relevant 

local data or substantial and well-powered local epidemiology) will occur, the process for selecting 

appropriate effect estimates for HIA requires careful development of profiles of characteristics of the city 

of interest and study locations to find the closest match along a range of attributes that can impact effect 

estimates.  Profiles can be generated using available databases on air quality composition (obtained from 

the EPA Air Quality System -- http://www.epa.gov/ttn/airs/airsaqs/ or the HEI Air Quality Database -- 

http://hei.sf.aer.com/login.php), baseline health status (using numerous sources from CDC), 

demographics (using databases from the U.S. Census Bureau), and other factors such as climate and 

meteorological variability.  Formal matching analyses can be conducted (e.g. clustering of cities based on 

health and air quality attributes), or less formal approaches based on expert analytical judgment can be 

used.  There is no single rule of thumb on how close areas need to be in attributes space – to some extent 

this will depend on how much uncertainty is acceptable in the analysis.  It will also depend on the 

attribute.  If an attribute has been shown to have a large impact on effect estimates, then the focus should 

be on matching that attribute as closely as possible. In cases where the information base is more limited, 

matching may be inapplicable, in which case the analyst should broadly consider the degree of 

uncertainty and/or bias associated with application of the available effect estimates.   

It should be noted that the aforementioned approach is most relevant to time-series studies, which 

focus on day-to-day variations in pollution within cities. However, another form of study is often used to 

examine long-term health outcomes associated with chronic exposures.  These studies use the variation in 

long-term pollution concentrations between cities to estimate the C-R function.  The best of these studies 

use prospective cohort designs, which track the survival rates (or disease-free status rates) for individuals 
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over time, and calculate relative risks from pollution controlling for differences in baseline health risks 

due to smoking status, diet, etc.  Because these studies use between-city variability to generate the C-R 

function, city specific estimates are not available.  Thus, when applying the effect estimates from cohort 

studies, the mean estimate should be used.   

However, care should be taken to identify any systematic differences between the populations 

used in the cohort study and the populations in the location of the HIA.  For example, it has been 

recognized that the population studied in one of the most widely used cohort studies, the American 

Cancer Society (ACS) Study (Pope et al, 2002), is not representative of the demographic mix in the 

general population.  The ACS cohort is almost entirely white and has higher income and education levels 

relative to the general population.  In EPA’s recent expert elicitation study, many of the experts suggested 

that these sample characteristics led to a downward bias in the estimated C-R functions relative to a C-R 

function that would be representative of the general U.S. population (Roman et al, 2008).    

Most previous HIA (EPA, 2005; EPA, 2006; Levy and Spengler, 2002; Levy et al., 2002a) have 

used estimates from the Harvard Six Cities (Laden et al, 2006) and ACS (Pope et al, 2002) studies of PM 

related mortality, given concerns that other published cohort studies do not match the national population 

in terms of demographics, risk factors, or disease status. For example, the Washington University-EPRI 

Veterans Cohort Study (Lipfert et al., 2006) involved male hypertensive veterans receiving treatment at 

VA clinics, with 57% current smokers (versus 24% in the general population). Another cohort study 

(McDonnell et al., 2000) focused only on non-smoking Seventh-Day Adventists in California. In either 

case, the populations differed in multiple ways that could significantly impact the effect estimates. As it is 

unlikely that any general population HIA will exclusively capture such targeted populations, even at a 

local scale, the Six Cities and ACS study estimates will be more relevant for local HIA.   

 

 

Baseline incidence/prevalence data 

 

Unlike with effect estimates, it is likely that substantial local baseline incidence/prevalence data 

could be available for at least some health outcomes, putting this step of the HIA further along the 

continuum in Figure 3. First, as a general point, the way in which the health outcome is defined should be 

in agreement with the epidemiological studies underlying the effect estimates, and the spatial resolution 

and scale of the baseline incidence or prevalence rate should ideally match the resolution of the HIA.  

For many health outcomes, utilizing baseline incidence data that are not specific to a given 

location or that are not adequately geographically resolved can introduce important uncertainties to the 

analysis. For example, in Boston, premature mortality rates (Chen et al., 2006) and asthma hospitalization 

rates (Gottlieb et al., 1995) have been shown to differ substantially by neighborhood, depending in part on 

socioeconomic status. As another example, as shown in Figure 4, zip-code level asthma hospitalization 

rates vary substantially within Detroit, ranging from a maximum of 129 to a minimum of 10 per 10,000. 

This range is significantly different than the single national estimate of 28 in 10,000 that EPA applies in 

its regulatory analyses (EPA, 2005; EPA, 2006).  

The policy implications of using alternate baseline incidence rates become clear when estimating 

the total changes in asthma-related hospital admissions resulting from changes in PM2.5 levels. For 

example, using the EPA default baseline hospitalization rate generates a total reduction in asthma-related 

hospitalizations of 36 cases (90
th
 percentile confidence interval from 17 to 54). In contrast, using the 

local-scale rates produces a reduction in asthma-related hospitalizations of 53 cases (90
th
 percentile 

confidence interval from 26 to 81). Clearly, using national-scale baseline incidence rates would under-

estimate the total change in this particular health endpoint in Detroit, and would not capture the spatial 

and demographic variability in that endpoint. Similar differences in the results of local-scale HIA have 

been observed when using geographically-averaged baseline rates versus demographically-stratified rates 

that vary by location (Levy et al., 2002a).  

The chief impediment to using such high resolution baseline incidence data is that it is very 

resource-intensive to produce or it may simply not be available for the outcome of interest. For example, 
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while the Wayne County Department of Public Health maintains a comprehensive asthma epidemiology 

database, it was necessary for an epidemiologist to reformat these data to generate tables in a format 

suitable for use in a health impact assessment. Moreover, neither the County nor the State Department of 

Public Health was able to provide refined estimates of baseline incidence rates for other important health 

PM2.5 endpoints, such as non-fatal heart attacks or chronic bronchitis.  

Given these constraints, local scale baseline incidence rates for each health endpoint of concern 

will not always be available. However, rather than relying solely on national or broad regional estimates, 

it may be possible to apply interpolation or other estimation techniques to infer the baseline rates for the 

city of interest. For example, if incidence rates correlate well with some number of easily observed 

independent variables—perhaps age, race and geographic region—then one could estimate the baseline 

incidence rate. This approach has been followed previously, as baseline incidence data were simulated at 

high resolution for large spatial scales as a function of demographic factors (Levy et al., 2002a). A 

limitation is the fact that this relies heavily on the assumption that factors such as race and education are 

universally-applicable causal factors rather than covariates reflecting complex contextual relationships 

within the underlying studies from which the correlations were developed. Geostatistical interpolation 

techniques, such as kriging and co-kriging, may also be of some use in creating a spatial surface of 

interpolated baseline incidence rates. The uncertainty these methods introduce, though significant, is 

likely outweighed by the improved representation of geographic heterogeneity inherent in baseline 

incidence rates. 

 

Air quality data 

 

Changes in air quality—monitored or modeled—ultimately drive estimates of health impacts. A 

key analytical challenge is to represent both the spatial distribution and scale of these air quality changes. 

For pollutants such as PM2.5, we would expect a high degree of variability in the geographic distribution 

of air quality changes across urban areas, given certain source controls, while at the same time long-range 

transport may affect populations located outside of the urban area. For example, evidence suggests that 

directly-emitted carbonaceous particles from motor vehicles are subject to a steep spatial gradient as a 

function of distance from the roadway (Zhou and Levy, 2007). By contrast, other studies have shown that 

health impacts need to be characterized at a regional or national scale, especially for point sources and 

secondarily-formed particulate matter (Greco et al., 2007; Levy et al., 2002b; Levy et al., 2003).  

Without knowing the policy context for the HIA, it is therefore difficult to know the extent to 

which monitors or models can be used, or the necessary scale and resolution. One general statement that 

can be made is that the exposure data must be reasonably in agreement with the way in which exposure 

was characterized within the underlying epidemiological studies. If the concentration-response function is 

derived from a single central-site monitor, highly spatially-resolved exposure characterization would be 

difficult to interpret within an HIA. That being said, finer-scale air quality data will clearly take on added 

importance for a local HIA, in which it may be of interest to align inputs such as the baseline incidence 

rates and populations with the spatial air quality gradient.  

 

Comparing locally developed health impact estimates with literature-based estimates 

 

In many cases, even if analysts conduct an HIA using locally generated baseline incidence and 

prevalence data, C-R functions, and air quality data, it may be useful to generate health impacts using 

literature based estimates as well as a way of putting the local data-based estimates into context.  In 

comparing estimates generated using national and local data, it will be important to understand what 

differences might be expected versus differences that cannot be expected or explained. In addition to 

evaluating differences between attributes of locations, analysts should also be aware of the timeframe in 

which a national analysis was conducted.  Some population or air quality characteristics may have 

changed significantly between the time when a study was conducted and the present, as discussed in more 

detail below. 
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 In addition to local area attributes, analysts should also compare the statistical methodologies 

used in generating the local area estimates relative to those used in generating the national estimates.  For 

example, if different functional forms are used for a local epidemiological study and the published 

literature (e.g. two-day moving average vs. distributed lags), then there may be differences in the 

expected results, solely from the statistical methods used. Similarly, data collection and aggregation 

methods may differ for baseline incidence/prevalence data.  

 

 

IV. Consideration of time-varying factors in developing and applying impact functions across 

multiple years 

 

As noted above, changes over time in local level attributes that affect air quality, populations, and 

population exposures can make comparison of local health impact estimates over time challenging.  From 

an accountability perspective, if these changes are not accounted for, then the “signal” from programs 

intended to reduced air pollution related health risks can be masked or overstated.  For example, if the age 

composition of a population is becoming older over time, but age is not incorporated into a time series 

design, then relative risks to a population may appear to increase over time, even as pollution levels 

decrease, simply because the “at risk” susceptible proportion of the population is increasing. 

Some time-varying factors that should be considered when designing a multiple year assessment 

program include demographics, exposure modifiers, air pollution sources, pollutant composition, and 

meteorology/climate.  Demographic factors may include age composition, race, educational levels, 

income and income disparity, and population health characteristics such as rates of obesity, asthma, and 

heart disease. This essentially includes covariates that could explain between-site variability in effect 

estimates or baseline incidence rates, so the process of determining the appropriate impact functions for a 

local HIA can help to elucidate the most significant time-varying factors to consider. Some recent 

evidence also suggests that it is important to account for public health interventions that might modify the 

impacts of air pollution on health.  For example, a recent study by Schwartz et al. (2005) found that the 

introduction of statin drugs reduces the relative risk from PM.  The widespread and increasing use of 

statin drugs in the population may then affect the observed relative risks from PM over time.   

Changes in the composition of air pollution may occur both due to pollution control programs and 

due to natural economic factors such as plant closures.  Pollution control programs may target one 

pollutant over another, e.g. reducing SO2 while leaving direct carbon levels unaffected, or may even 

decrease one pollutant while increasing another, e.g. adding catalytic converters to cars reduces NOx 

emissions but increases NH3 emissions. 

Finally, as climate changes over time, both the susceptibility of populations to air pollution and 

the nature of air pollution events may change.  Higher temperatures may increase susceptibility to air 

pollution related health effects (Roberts, 2004).  Several recent studies have found an increased risk of air 

pollution stagnation events under projected changes in the global and regional climate, which are 

expected to decrease the cyclone frequencies (Leung and Gustafson, 2005;  Mickley et al, 2005; Wu et al, 

2007) 

Forward looking design of health impact assessment protocols can help to avoid comparability 

problems by including controls for time-varying factors.  With the proper study design, as conditions 

change, the changes in effects expected from air pollution reductions can be isolated from changes in 

effects due to other time-varying factors. 

 

V. Characterizing uncertainty in health impact estimates 

 

An important component of any local or national HIA is a characterization of the uncertainties 

associated with estimates of health impacts.  While techniques exist to provide probabilistic estimates of 

impacts, those techniques are limited by a lack of input data on uncertainty in individual impact function 

elements.  For some elements, such as the effect estimate, there is at least some limited information on 
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uncertainty, in the form of standard errors from the statistical estimation, while for others, e.g. baseline 

incidence rates, there is no information available.   

Bayesian approaches, such as hierarchical Bayes analyses used in multicity studies, can provide 

additional characterization of uncertainty, because they partially account for heterogeneity between cities, 

thus accounting for some of the uncertainty about transferability.  However, even these approaches cannot 

address overall model uncertainty or uncertainty about causality. 

As alluded to earlier, one approach that has been utilized in a limited number of settings involves 

formal expert elicitation. The U.S. EPA recently conducted an expert elicitation to try to provide a more 

complete assessment of the uncertainties associated with the effect estimate for PM related mortality 

(Roman et al., 2008).  The process and results for this study are available at 

http://www.epa.gov/ttn/ecas/regdata/Uncertainty/pm_ee_report.pdf .  Expert elicitation is useful in 

integrating the many sources of information about uncertainty in the C-R function, because it allows 

experts to synthesize these data sources using their own mental models, and provide a probabilistic 

representation of their synthesis of the data in the form of a probability distribution of the C-R function.  

The goal of the study was to elicit from a sample of health experts probabilistic distributions describing 

uncertainty in estimates of the reduction in mortality among the adult U.S. population resulting from 

reductions in ambient annual average PM2.5 levels. The main quantitative question in the formal interview 

protocol asked experts to provide the 5th, 25th, 50th, 75th, and 95th percentiles of a probabilistic 

distribution for the percent change in U.S. annual, adult all-cause mortality resulting from a 1 µg/m
3
 

change in annual average PM2.5 exposure, assuming a range of baseline PM2.5 levels between 4 and 30 

µg/m
3
.  Expert elicitation methods are still somewhat controversial, and care should be taken to follow 

formal expert elicitation protocols.  It is also unlikely that expert elicitations at this scale would be 

conducted for an individual local HIA, or even for many of the key elements, given the cost, time, and a 

lack of empirical data from which experts could derive informed opinions. However, results from 

available expert elicitations can provide a more robust understanding of uncertainties in different 

analytical components, and may eventually provide insight about some of the transferability concerns 

central in local HIA. 

In addition to formal probabilistic analyses, sensitivity analyses are also a useful way to 

understand how sensitive results are to alternative assumptions.  Sensitivity analyses can be used to 

examine individual assumptions or combinations of assumptions.  When communicating the results of 

sensitivity analyses, care should be taken to indicate the potential likelihood of the set of assumptions to 

avoid giving an artificially distorted impression of the likely range of impacts. 

There are some types of uncertainties that are especially important when conducting a local scale 

analysis using national level data or transferring data from a different location.  These uncertainties relate 

to the factors identified in the sections above on choosing effect estimates.  These uncertainties can be 

minimized by careful selection of effect estimates based on cities that are similar to the city under 

analysis.  Other sources of uncertainty at the local level include uncertainty in the application of regional 

or national baseline incidence rates and uncertainty in air quality levels assigned to specific populations.  

These uncertainties can be minimized by using as spatially refined estimates as available. 

 

VI. Conclusions and recommendations 

 

Properly conducted local health impact assessments can be informative and defensible.  However, 

there are many opportunities for biases and uncertainties to be introduced into the analytical process.  

Careful attention to the inputs to the analysis can help to minimize uncertainties and reduce the potential 

for biased results.  In addition, comparison with results from other locations or with national results can 

provide context for the results and a check on the reasonableness of estimates. 

 

Some key recommendations for conducting interpretable local HIA include: 
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• Clearly identify characteristics of study locations that may influence health effect 

estimates, including air quality composition, population demographics (age, race, income, 

etc.), and climate/meteorology. When applying previously-published studies, pay 

attention to statistical designs, including functional forms, controls for weather and other 

confounders, lag structures, and treatment of missing values, and timeframes for each 

study from which an effect estimate is derived. 

• Compare characteristics in the local area to the characteristics of the source study 

locations and select effect estimates from studies or cities with characteristics closely 

matching those of the local area. 

• Choose a spatial resolution for air quality data appropriate given the exposure assessment 

within the epidemiological studies of interest, the spatial gradient in air pollution given 

the pollutant and sources being controlled within the assessment, and potential for 

correlation with population demographics.  In cases where there is a sharp gradient in air 

pollution that is highly correlated with spatial gradients in population density or 

susceptibility characteristics, high resolution data should be used in spite of the attendant 

uncertainties and potential issues in combining these data with epidemiological evidence 

based on central-site monitors. 

• Baseline health outcome data should be as spatially and demographically refined as 

possible.  When local baseline health data are not available, analysts should consider 

using prediction or interpolation methods to derive local baseline rates using national or 

regional estimates coupled with locally available data shown to be correlated with the 

health outcomes of interest. 

• Design multi-year studies with accountability and comparability in mind.  Designs should 

incorporate time-varying factors, including baseline population health (which may be 

influenced by the availability of certain types of medical interventions like prevalence of 

statin drug use), socioeconomic factors, climate (e.g. mean summer temperatures), 

sources of emissions (which can affect the composition of local air pollution), and 

availability of detailed air quality forecasts, that can influence the relationship between 

air pollution and health. 

• Uncertainty should be discussed and characterized quantitatively where possible.  

Probabilistic approaches can be used to characterize some uncertainties, but should be 

accompanied by single and multi-attribute sensitivity analyses to address uncertainties 

that do not have good probabilistic data available. 
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Links to Recent Local Scale BenMAP Applications: 

 

1. Georgia (Cohan, Daniel S., James W. Boylan, Amit Marmur and Maudood N. Khan. 

2007.  An Integrated Framework for Multipollutant Air Quality Management and Its Application 

in Georgia.  Environmental Management, 40(4): 545-554) 

2. Philadelphia 

(http://www.cleanair.org/dieseldifference/resources/reports/pmphillyreport.html) 

3. Detroit 

(http://www.cleanairinfo.com/regionalstatelocalmodelingworkshop/old/2007/presentations/Thurs

day%20-%20May%2017%202007/Air_Toxics_Update_Detroit_Study.pdf) 

4. Baltimore (???) 

5. LADCO (Deck, L. 2006.  Benefit Study of MRPO Candidate Control Options for 

Electricity Generation.  Stratus Consulting Inc. Prepared for: Lake Michigan Air Directors 

Consortium, available at 

http://64.27.125.175/reports/rpo/Regional%20Air%20Quality/EGU%20Benefit-

Cost%20analysis%20Stratus.pdf) 

6. Minnesota (ICF Consulting, 2005.  Air Quality and Health Benefits Modeling: Relative 

Benefits Derived from Operation of the MEP-I/II IGCC Power Station.  Prepared for Excelsior 

Energy Inc.  Available at 

http://www.excelsiorenergy.com/pdf/Regulatory_Filings/Docket_E6472_M-05-

1993/20051227InitialFiling/15%20Exhibit%20D.pdf) 

7. California (Chang, E., L.T. Tsiopulos, and. J. Whynot. 2007.  Final Socioeconomic 

Report for the 2007 AQMP.  South Coast Air Quality Management District.  Available at:  

http://www.aqmd.gov/aqmp/07aqmp/07AQMP_socio.html) 
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Table 1.  Health Endpoints Included in Recent U.S. EPA National Health Impact Assessments (EPA, 

2005; EPA, 2006). 

 

Health Endpoint PM Ozone 

 Mortality � � 

 Chronic bronchitis �  

 Nonfatal heart attacks �  

 Hospital admissions � � 

 Asthma ER visits � � 

 Minor Restricted Activity Days � � 

 Asthma attacks � � 

 Work loss days �  

 Worker productivity  � 

 School absence rates  � 
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Table 2.  Summary of 2020 National Health Impacts Associated with Attainment Strategies for 

Alternative Ozone NAAQS (EPA, 2007). 
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Figure 1.  Health Impact Assessment – Analytical Framework 
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Figure 2.  Continuum for use of national vs. local data in local scale health impact assessments. Note that 

a separate continuum would be applicable for each health outcome. 
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Baseline Asthma Hospitalization Rates 
for Ages <18 (per 10,000)

10 to 21

22 to 35

36 to 57

58 to 85

86 to 129

Geographic Distribution of PM2.5 Reductions Resulting from 
20% Monitor Rollback

Zip code level estimates from the Michigan Department of
 Community Health

Incremental Change in PM2.5 (ug/m3)

2.83 to 3.01

3.02 to 3.17

3.18 to 3.33

3.34 to 3.53

3.54 to 3.91

 
Figure 4. Comparison of the Geographic Distribution of Zip-Code Level Asthma Hospitalization Rates 

and a Hypothetical 20% Reduction in Monitored PM2.5 in the Detroit Metropolitan Area 
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Considerations in the use of ozone and PM2.5 data in exposure assessment 

Warren H. White     Workshop on Methodologies for Environmental 

Crocker Nuclear Laboratory   Public Health Tracking (EPHT) of Air Pollution 

University of California, Davis  Effects,  Baltimore 1/15-16/08 

 

Ozone and PM2.5 as air quality indicators 

 Ambient air is a complex mixture of gases and suspended particles.  EPHT will focus on 

ozone and PM2.5, which have demonstrated empirical associations with public health statistics.  

These two indicators do not characterize all potential dimensions of toxicity, and their 

relationships to other species will merit consideration when interpreting EPHT results.  We begin 

with some background on these relationships. 

 Ozone concentrations are governed by a system of photochemical reactions involving 

nitrogen oxides, hydrocarbons, free radicals and other products.  These reactions produce 

relationships among the reactants, an important one being the photostationary state approximated 

by concentrations of ozone and the nitrogen oxides.  The fast cycle,  O2 + NO2 + hν � O3 + NO 

and O3 + NO � O2 + NO2,  keeps the photostationary ratio [NO][O3]/[NO2] near the ratio of the 

respective rate coefficients.  This constraint relates the ozone concentration to the concentrations 

of nitrogen oxides [NOx] = [NO]+[NO2] and odd oxygen [Ox] = [O3]+[NO2], which the cycle 

leaves unchanged.  It follows that the near-source effect of NO emissions is to depress ozone 

concentrations, as evident in Figure 1.   

 Ozone rises to problem levels through the involvement of radicals and other 

intermediates formed during oxidation of reactive hydrocarbons.  These other species provide 

alternatives to ozone as pathways for the oxidation of NO to NO2.  Because they do not consume 

ozone in the process, the slower alternatives allow [Ox] = [O3]+[NO2] to accumulate along with 

other reaction products.  Monitoring strategies and exposure metrics for O3 are designed to 

capture this accumulation by emphasizing conditions that minimize masking by fresh emissions.  

Thus health-based air quality standards address the maximum 1h or 8h concentrations recorded 

anywhere in an area; monitors are set back from roadways, and many operate only during the 

most photochemically active portion of the year.  These choices yield an indication of exposure 

to the photochemical mix, not just to ozone itself. 

 PM2.5 is defined operationally as the mass of particulate matter (PM) collected on 

specified filter media under specified conditions, behind a specified inlet designed to exclude 

particles greater than about 2.5 um in aerodynamic diameter.  The collected material is a 

heterogeneous agglomeration of solid and liquid particles, some of them semi-volatile, that when 

airborne were of diverse size, shape, and composition (Figure 2).  The mass metric “greatly 

simplifies complex biological phenomena” in the judgment of a recent review (NRC, 2004). 

 Collected PM can be categorized into components in various ways.  It is useful to 

distinguish between primary particles, which are emitted directly to the atmosphere, and the 

secondary condensates that atmospheric reactions produce from gaseous emissions.  Whereas 

primary PM concentrations rapidly fall as emissions mix with cleaner background air, secondary 

PM concentrations may increase for some distance downwind.  The primary and secondary 

components of PM are thus differently distributed even when both arise from the same source of 

emissions.  Chemical composition offers another classification framework, one more directly 

relevant to toxicity.  Coal combustion, which releases both fly ash and sulfur dioxide, provides 
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an illustration of these distinctions.  The ash is directly emitted as primary particles whose 

concentrations peak nearby, while the SO2 emissions slowly oxidize to form secondary sulfates 

as they are carried downwind.  (Smokestacks of course separate the near-field concentration 

peaks from ground-level populations.)  PM2.5 may serve as a reasonable proxy for the sulfate 

fraction in the eastern U.S., where inorganic sulfates account for much of total PM2.5 mass, but is 

less indicative of fly ash, which is a minor mass contributor.  Meanwhile, recent health research 

has shown more interest in the trace metals carried by fly ash than in sulfates (NRC, 2004).  

 Concentrations of ozone and PM2.5 tend to be more uniform than those of exclusively 

primary pollutants such as SO2 and combustion nuclei, which often exhibit “hot spots” near 

major sources.  A multiplicity of emissions contribute to ozone and PM2.5, and these are mixed 

and dispersed in the atmosphere during the time required to form ozone and the secondary 

species that account for much of the PM2.5 total.  The relative uniformity of ozone and PM2.5 

contributes to their success as observable indicators of air quality, because it allows point 

measurements to be representative of community-scale exposures.   

 Day-to-day variations in concentration are driven principally by changes in atmospheric 

transport and dispersion.  There are seasonal and weekly cycles in emissions, and major 

transients of smoke and dust can arise from “exceptional events” to be discussed later, but 

emission rates are generally much less variable than ambient concentrations are.  Concentrations 

at a given location are affected by wind direction and the ventilation factor, the wind direction 

determining which sources are upwind and the ventilation factor governing the dilution of all 

emissions.  Ventilation functions as an overall scaling coefficient that is influenced by large-

scale factors such as mixing depth and wind speeds aloft.  Point measurements of a spatially 

uniform pollutant thus capture some of the relative variation in all species’ community-average 

concentrations, even those with unmonitored hot spots. 

 Figure 3 illustrates, in cartoon form, the potential of a broadly distributed pollutant to 

serve as an indicator of community exposures to unrelated local emissions.  Line City is a 

collection of pollutant sources and two neighborhoods arrayed along an east-west axis.  The two 

neighborhoods are bracketed by sources of the broadly distributed indicator species I.  The 

neighborhoods themselves bracket the sole source of X, the primary pollutant actually affecting 

health.  Each source generates a plume of effluent to the east or west depending on wind 

direction.  Line City winds blow from the east on half of the days and from the west on the 

others.  Both neighborhoods receive I emissions every day, but this I is mixed with unhealthful X 

in only one neighborhood at a time.  Wind speed and mixing depth combine each day, 

independently of wind direction, to yield either good or poor synoptic ventilation.  Only one of 

the two neighborhoods has air quality monitors.  Because the I monitor always sees the effects of 

ventilation, even when the X monitor has nothing to measure, the I measurements give a better 

indication of community exposure to X than do the available measurements of X itself.   
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Availability of measurements and models 

 Ozone and PM2.5 are among the six “criteria pollutants” routinely monitored for 

compliance with National Ambient Air Quality Standards (NAAQS) by Federal Reference 

Method (FRM) or Federal Equivalent Method (FEM).  States, tribes, and local agencies establish 

and operate compliance networks following specific EPA guidelines for siting, instrumentation, 

and quality assurance.  The resulting data are submitted to EPA’s Air Quality System (AQS) 

database by the end of the quarter following the quarter of their collection.  AQS is an attractive 

source of uniform, timely, and quality-assured air monitoring data. 

 Figure 4 compares the volumes of FRM/FEM data available for ozone and PM2.5.  

FRM/FEM measurements are made daily at far more locations for ozone than for PM2.5.  Ozone 

was measured at this frequency at over 550 sites throughout 2006 and at over 1100 sites during 

peak ozone months, while daily PM2.5 measurements were made at under 110 sites.  Most 

FRM/FEM measurements for PM2.5 are made once every three or six days.   

 The different frequencies of the FRM/FEM data for ozone and PM2.5 reflect the 

networks’ design for compliance monitoring rather than public health tracking.  The health-based 

ozone NAAQS has always targeted extreme values, specifying an 8h (formerly 1h) concentration 

not to be exceeded more than a handful of days each year.  Verifying compliance with a standard 

of this form requires continuous monitoring, at least during the season of high concentrations.  

The new PM2.5 NAAQS introduced in 1997 included a limit on the annual mean as well as one 

on extreme 24h concentrations.  The annual standard was generally controlling, in the sense that 

it was hard to violate the 24h standard without also exceeding the annual mean.  Compliance 

monitoring for PM2.5 therefore focused on the annual mean, which usually could be estimated 

from measurements on a representative sample of days.  EPA significantly tightened the 24h 

standard in December 2006, and supported this change by moving to daily sampling at about 50 

monitoring sites previously sampling one day in three (USEPA, 2006). 

 Non-FRM/FEM data for PM2.5 are available on the every-third-day schedule of most 

FRM/FEM monitors from two networks that monitor particle speciation (VIEWS, 2007).  

IMPROVE (Interagency Monitoring of PROtected Visual Environments) operated about 160 

sites in 2006, at predominantly rural or remote locations.  CSN/STN (Chemical Speciation 

Network / Speciation Trends Network) operated about 60 population-oriented sites every third 

day and about 125 more every sixth day.  These networks weigh 24h samples on Teflon filters as 

the FRM does, but use samplers with inlets and flow rates different from FRM specifications.   

 Daily PM2.5 measurements are made at many more locations by continuous monitors, in 

support of EPA’s AIRNow public-reporting program.  About 580 sites throughout the U.S. 

currently supply real-time hourly data (Chan, 2007) that are reduced to broad ranges for display 

on a national map (Figure 5).  The data are qualified as “not fully validated … [and] only 

approved for the expressed purpose of reporting and forecasting the Air Quality.”  They are 

password-protected from public access, but are available to stakeholder agencies (Chan et al., 

2007).  Various measurement methods are used, including beta absorption, nephelometry, and 

the most commonly employed, the Tapered Element Oscillating Microbalance (TEOM).   

 EPA excludes continuous PM2.5 monitors from consideration as FEMs, but contemplates 

their inclusion as Approved Regional Methods (ARMs) in its overall monitoring strategy.  EPA 

distinguishes ARM data from FRM/FEM data because particle measurements are sensitive to 

methodological details.  Some ambient particles are in equilibrium with surrounding gases, an 
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equilibrium that can shift after they are sampled onto an FRM/FEM filter through which air 

continues to be drawn.  Because the PM2.5 NAAQS is set in terms of the FRM, a method that 

avoided such sampling artifacts (or exhibited different ones) would not be suited to monitoring 

NAAQS compliance.  Additionally, the continuous methods are not directly gravimetric and so 

require calibration factors that can vary with particle composition and ambient humidity.  It is 

clearly undesirable to have site-specific calibrations influence compliance determinations that 

span diverse climates and regulatory jurisdictions. 

 Data quality objectives for EPHT differ from those for compliance monitoring, in ways 

that are more welcoming of AIRNow data.  Compliance determinations address whether or not 

measured concentrations exceed a specified limit; avoiding errors requires measurements that are 

especially accurate at concentrations near that limit.  Epidemiological analyses examine 

differences rather than absolute concentrations, and require only the correlation of a 

measurement with the variable of interest.  It is correlation with the FRM that will qualify a 

method as an ARM:  Mintz and Schmidt (2007) report an overall correlation of r
2
 = 0.77 between 

24h AQS and AIRNow PM2.5 concentrations in over 110,000 paired observations during 2004-

2006. 

 Whatever the density of a monitoring network and whatever the quality of its 

measurements, reported concentrations represent only a sample from the continuous atmosphere 

to which people are actually exposed.  The relationship of inhaled air to monitored air is 

embedded in any observed statistical association between air quality and community health.  

City-scale studies have commonly modeled this relationship by treating individual exposures as 

Berksonian departures from a city-wide air quality that is estimated by averaging all local 

measurements in each monitoring period.  Such simple models are consistent with the 

interpretation, sketched earlier, of ozone and PM2.5 as generic indicators for broader chemical 

mixes.  Without more detailed knowledge of individual activity patterns, it is unclear how much 

additional explanatory power could be gained from greater spatial resolution of concentration 

fields.   

 On the geographic scales EPHT is to cover, a model accommodating spatial gradients 

will be needed to relate measured concentrations to individual exposures.  This model should 

reflect known emissions gradients and wind patterns.  EPA’s current operational-level 

understanding of these factors is incorporated in its Community Multi-scale Air Quality 

(CMAQ) grid model, which has been used since 2004 to produce real-time national forecasts of 

hourly ozone concentrations (NWS, 2007).  CMAQ’s PM2.5 routines are much younger than its 

ozone routines, which trace their ancestry back through generations of critical scrutiny (e.g. 

NRC, 1991).  A recent report (USEPA, 2005) found performance in the western U.S.  to be 

significantly poorer for all PM2.5 species than in the eastern U.S., which had been the early focus 

of evaluations.  Users can expect CMAQ’s PM2.5 performance to evolve and improve as it 

undergoes more cycles of review and development.   

 CMAQ’s primary function has been to support the evaluation of alternative strategies for 

managing emissions to attain ambient standards.  It is accordingly source-oriented, taking 

emissions and winds as given and predicting the ambient concentrations that result under various 

regulatory scenarios.  One limitation of any source-oriented PM2.5 model is that elevated 

concentrations can result from sporadic and hard-to-characterize fugitive emissions.  Unlike CO 

and SO2, which emerge predictably from tailpipes and stacks through which their fluxes can be 

measured and documented, episodes of dust and smoke typically reflect agricultural and 
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construction activities, wildfires, and other sporadic and diffuse sources.  Even concentrations 

measured near such sources are not reliably convertible to the mass fluxes needed as model 

inputs.  Ammonium nitrate, a sometimes-important secondary fraction, presents a similar 

problem; although tailpipe and stack emissions of NOx are well accounted for, fugitive emissions 

of ammonia are not.  Evaluations of CMAQ repeatedly show its sulfate prediction to exhibit the 

best agreement with measured 24h concentrations (Mebust et al., 2003; USEPA, 2005).  It is no 

coincidence that SO2, the precursor to sulfate PM2.5, has perhaps the best-characterized emissions 

of any air pollutant.   

 CMAQ and the monitoring networks exhibit somewhat complementary strengths and 

weaknesses, suggesting that a fusion of the two might yield superior air data for EPHT.  Point 

measurements represent “true” concentrations, as defined by regulations and the epidemiological 

findings that motivate them.  However they have no necessary relationship to one another; in 

sparsely monitored areas they leave uncertain the boundaries between clean and dirty air.  In 

contrast CMAQ yields a logically coherent grid of concentrations that reflects our understanding 

of emissions and atmospheric processes.  These concentrations can be unrepresentative of reality, 

however, when they are derived from inaccurate descriptions of emissions and the atmosphere. 

 Model outputs could in principle be reconciled with measurements by adjusting uncertain 

model inputs.  Prior probability distributions would be assigned to the intensity and geographical 

distribution of emissions, to wind fields, and to empirical parameterizations of atmospheric 

transformations, and then revised in light of observed concentrations.  The iterations required for 

a fully Bayesian solution would be difficult to implement with the massive CMAQ code, 

although steps in this direction have been taken with simpler models.  A less demanding 

approach to assimilating observations with CMAQ is the hierarchical Bayesian (HB) approach 

described by McMillan et al. (2007).  Watkins et al. (2005) reported encouraging results from 

epidemiological explorations with HB-fused air data. 

 McMillan et al. used HB modeling to reconcile PM2.5 concentrations from CMAQ and 

compliance monitoring in the eastern U.S. during 2001.  In 2001 there were no data-quality 

objectives for continuous PM2.5 monitors (USEPA, 2002), and no collation and mapping of 

continuous data by AIRNow.  In this setting the authors relied on FRM/FEM data for their 

observational inputs, reserving non-FEM measurements (from the IMPROVE and CSN/STN 

speciation networks) for cross-validation of the results.  In 2004 and later years, the continuous 

PM2.5 data reviewed by Mintz and Schmidt (2007) provide much fuller observational coverage of 

the space-time grid than the predominantly 1-in-3-day FRM/FEM data offer, and any 

inequivalence between them can be accounted for within the Bayesian framework.  Incorporating 

the continuous data seems a natural next step for EPHT to explore, particularly given EPA’s 

announced intention to facilitate their substitution for filter-based FRM measurements in the 

future (USEPA, 2006). 
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Figure 1.  Right:  Observed ozone deficit in 

a NOx-rich power plant plume, from a 

traverse by instrumented aircraft (adapted 

from White, 1977).  Circles show ozone 

profile from a simple photostationary model.  

  

Below:  Simulated NOx (left) and O3 (right) 

concentration fields in Houston, from a 

CMAQ model run at 1 km grid resolution 

(adapted from Ching et al., 2006).  Arterial 

roads show NOx excesses and O3 deficits, as 

do source regions to the southeast.  
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Figure  2.  Electron micrographs of example atmospheric particles (NRC, 2004; adapted from 

Buseck and Posfai, 1999).   

(a)  Internal mixture of sulfate and soot; arrow points to a soot aggregate.  The surrounding halo 

is ammonium sulfate crystals formed as the sulfate dehydrated in the microscope’s vacuum.   

(b)  Sea salt.   

(c)  Branching soot aggregate typical of combustion processes.   

(d)  Internal mixture of terrestrial silicate with sea salt and anhydrite (calcium sulfate) likely 

formed by reaction of sulfur dioxide with carbonate particles. 
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Figure 3.   Pollution climate of Line City.  Blue bar maps the linear arrangement of emissions 

sources and monitor.  Rectangles above the bar show x-z distributions of atmospheric 

concentrations under four different meteorological regimes.  Graphs below the bar plot city-

average concentrations of the harmful agent X against monitored concentrations of X and the 

generic air quality indicator I. 
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Figure 4.  Trends in monitoring by the Federal Reference Method (FRM) or a Federal 

Equivalent Method (FEM).  FRM and FEM monitors for ozone report continuously, year-round 

in some locations and during selected warm months at others.  Measured “days” for ozone are 

plotted as reported hours/24.  FRM and FEM monitors for PM2.5 collect 24h samples year-round, 

daily or every third or sixth day.  At sites with multiple monitors, only the one reporting the most 

observations was counted.  Data were downloaded December 2007 from AirData, 

http://www.epa.gov/aqspubl1/annual_summary.html. 
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Figure 5.  AIRNow map of 24h PM2.5 air quality indices on 12/14/07, captured 12/15/07 from 

http://airnow.gov/index.cfm?action=airnow.displaymaps&Pollutant=PM2.5&StateID=60&doma

in=super.  Data are from continuous monitors not qualifying as FEM; nominal concentration 

ranges are 0 < green < 15 ug/m
3
, 15 < yellow < 40 ug/m

3
, 40 < orange < 65 ug/m

3
, 65 < red < 

150 ug/m
3
, and 150 ug/m

3
 < purple. 
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Air Pollution Forecasts and Results Oriented Tracking 

John Bachmann, Vision Air Consulting 

 

This paper provides a brief overview of recent EPA forecasts of air quality and emissions 

related to ozone and particle pollution.  It is intended to supplement conference papers on air 

quality and benefits estimates by highlighting the potential utility of national, regional, and local 

forecasts in developing and implementing health and environmental quality tracking programs.  

As Hubbell and Fann (2007) note, such forecasts are of particular importance in evaluating the 

feasibility and design of programs intended to assess the benefits of air related control or 

mitigation programs.    Tracking programs may focus on overall air quality improvements or on 

reductions from particular source categories of interest.  

 

The Past as Prelude 

 

 Over the past three decades of the Clean Air Act, EPA state, local, and tribal agencies, 

other major stakeholders in the process, including the private sector, have worked to implement 

programs aimed at reducing emissions of those pollutants that contribute to poor air quality 

(Figure 1; Bachmann, 2007).  The national-level trends in criteria pollutants and selected 

Hazardous Air Pollutants (HAP) shown in Figure 2 indicate the progress in air quality resulting 

from these programs.  Of the six pollutants for which national ambient air quality standards 

(NAAQS) exist, only two—ozone and PM2.5—remain persistent, widespread problems with 

concentrations above, or close to, the NAAQS.  As is more evident in below, this situation is 

forecast to continue, particularly with the recent tightening of the PM standard and the proposed 

revisions to the ozone NAAQS. 

 

National Emissions and Air Quality Forecasts 

 

EPA recently promulgated a number of federal regulations to reduce multiple air 

pollutants.  In 2005, EPA promulgated the “Clean Air Rules”, which included the Clean Air 

Interstate Rule (CAIR), the Clean Air Mercury Rule (CAMR), and the Clean Air Visibility Rule 

(CAVR).  These rules target emissions of NOx, SOx, and mercury from power plants.  In 

addition, EPA promulgated the Clean Air Nonroad Diesel Rule in 2004 aimed at reducing PM, 

NOx, and SOx from construction, agricultural, and industrial diesel-powered equipment.  EPA 

has produced emissions and air quality forecasts for these as well as more recent programs.  

(EPA, 2005)    

Figure 3 shows the projected changes in pollutant emissions between 2001 and 2020 

including the reductions resulting from the Clean Air Rules implementation.  As shown, with the 

exception of NH3, all pollutants are expected to decline over this period with significant 

reductions between 30 and 50 percent for NOx, SO2, and VOCs.  These declines demonstrate the 

effectiveness of CAA programs; however, the figure also shows the large remaining emissions 

across the eastern and western US in 2020.    

Figure 4 shows recent and projected improvements in PM and ozone air quality resulting 

from the Clean Air Rules and other baseline emissions reductions programs.  Recent significant 

improvements observed in these pollutants between 1999-2001 and 2003-2005 are primarily due 
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to the acid rain program, the NOx SIP Call, and mobile source programs implemented during this 

seven year period.    The pollutant emission reductions expected by 2020 from these programs 

will result in still fewer projected nonattainment areas for ozone and PM2.5.  Ozone and PM2.5  

non-attainment is projected to continue in southern and central California areas.  Ozone problems 

are forecast to persist in the Northeast corridor and Houston area, while PM2.5 issues continue in 

midwestern cities such as Chicago, IL; Detroit, MI; and Cleveland, OH; as well as Birmingham, 

AL.  These maps overstate non-attainment to the extent that do not include local or sub-regional 

programs that will be adopted to attain the standards.    On the other hand, these figures do not 

include the 2006 PM2.5 standard or possible strengthening of the ozone standards.  Figure 5 

projects baseline non-attainment in 2020 for a range of proposed ozone NAAQS alternatives.   

 

Some Implications for Tracking and Accountability 

 

Recognizing their inherent limitations, these national level forecasts can provide some 

indication of the extent of potential emissions and air quality improvements in particular areas 

expected over the next decade.   This might provide some guidance to those seeking to track 

areas with the most significant reductions.  In particular, those areas forecast to have continued 

non-attainment for ozone and PM in 2020 are those with a responsibility to develop additional 

control programs that attain the relevant standards.   More area specific forecasts will be 

produced by areas as they develop their control strategies and implementation plans.    

 

These forecasts can be broken according to specific source categories and particular 

areas.   An examination of the historical trends and the time course of the emissions reductions 

indicate we are currently in a period with the highest rate of anticipated emissions reductions.   

Figure 6 shows forecasted national changes in mobile source emissions from on- and off road 

vehicles for direct PM and NOx.  The later year projections are more uncertain, but it appears 

tracking programs over the next several years have a better chance for detecting trends. 
 

 Trends, timing, and relative importance of local sources will, of course vary with 

location.   In addition, uncertainties in these emissions inventories may be significant, especially 

for mobile source PM emissions.   The relative change forecast for mobile emissions is large for 

both particles and gases.   Given increasing evidence of increased health risk with proximity to 

traffic, it would be of some interest to examine the feasibility of detecting trends in areas with 

greater than average reductions forecast for direct PM and pollutant gases.    The national 

forecasts suggest that such tracking programs should begin soon, if they are not already 

underway, as we are already moving into a period of maximum change for both on and off-road 

sources.  The absolute PM reductions forecast appear small but recent comparisons of emissions 

data with air quality data suggest the contribution of direct mobile source PM is substantially 

larger than implied by the emissions data (EPA, 2006).   While overall mass will decline, the 

trends for near-roadway ultrafine particles are less clear.  Reductions in fine particle mass can 

increase ultrafine particles, but some technologies reduce both and the reduction in roadway SO2 

and NOx will also affect secondary ultrafine particle production.     

Because stationary sources of fine particles are also declining at the same time and the 

overall change from year to year is modest, those interested in near roadway trends might want 

to consider targeting tracking programs to areas with the best „signal to noise‟ for such sources.    

A number of areas are implementing or planning interventions that reduce existing diesel 
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emissions faster than the national new source regulations.   They involve school bus and fleet 

retrofits and programs to address existing marine emissions.  Examples include the West Coast 

Diesel Emissions Reductions Collaborative, the Midwest Clean Diesel Initiative, and the Rocky 

Mountain Clean Diesel Collaborative (EPA, 2008).   Areas affected by these programs should 

have faster than average improvements in diesel PM and related gas emissions,  The patterns of 

emissions and reductions will vary in port cities, such as Seattle, as compared to areas with 

programs that only school buses and fleets.   It may be easier to detect the effect of highway 

emissions in such areas, and a comparison of areas with and without interventions, as well as 

comparing eastern (with additional regional PM reductions) to western areas.   From a within-

city point of few, there may be advantages for a cross-sectional study in a port city with major 

near road and near port gradients in exposures to marine and terrestrial emissions.     
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Figure 1.  National Emissions Trends.  Clean Air Act programs effected substantial 
emissions of targeted pollutants as compared to CO2, which was not.  

 

Figure 2.  National-level trends in criteria and selected HAPs relative to the NAAQS and 
cancer benchmarks  Criteria pollutant programs contributed to reduction of specific toxic 
materials, including some automotive VOCs.  
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Figure 3.  Projected changes in pollutant emissions between 2001 and 2020 resulting 
from the Clean Air Rules and other baseline programs (see text). Numbers near each 
set of bars is the reduction or increase) in thousands of tons.  (EPA, 2005).   
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Figure 4.  Recent and projected ozone and PM2.5 air quality, 1999-2020 (after 
EPA, 2005). 

 

 

 

Figure 5.  Counties with monitors projected to violate proposed 8-hr ozone standards of 
0.070 and 0.075 ppm in 2020.   Based on preliminary modeling (EPA, 2007b). 
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a)                                                                                  b) 

 
Figure 6.   Forecast mobile emissions for a) direct PM2.5 and b) NOx in tons.  The rate of 
observed/projected reductions is larger between 2001 and 2015 than in later years.  
Similar patterns are seen for mobile VOC and stationary NOx/SO2. (Somers, 2007).    
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It’s Up in the Air:    

Some Guidelines for Communicating about Ambient Air Quality 
 
 
 One of the most important goals of CDC’s Environmental Public Health Tracking 
Program (EPHT) is to effectively and efficiently communicate information about ambient air 
quality, both in terms of the estimated potential public health impact on the general and highly 
susceptible populations, and the variation from place to place and over time.   Indeed, one goal 
of any surveillance or screening program is to develop data and information appropriate for the 
design and implementation of useful interventions.  Typically, these interventions will be 
implemented only if their relevance and impact can be conveyed clearly and convincingly to 
policy makers, the people responsible for implementation and those likely to be affected by the 
intervention.   

In the case of ambient air quality, data are collected routinely from monitoring stations 
throughout the US, compiled and interpreted by local, state and federal officials, and usually 
made freely available on the internet.  The goal of this paper is to describe some of the 
considerations in how the data are presented when made available, and to suggest 
considerations and strategies to make those presentations interpretable by the wide range of 
audiences interested in them.  For the purposes of this paper, the discussion is based on 
consideration of two air pollution constituents, ozone (O3) and particulate matter (PM2.5), as well 
as estimates of population health impact. 
 One report that specifically addressed this issue broadly and relatively comprehensively, 
was developed for APHEIS Project, the Air Pollution and Health:  A European Information 
System.(APHEIS 2004)  The researchers noted differences between potential audiences, in 
terms of goals, scientific background, and culture, suggesting the need for information to be 
presented in a variety of formats, including a non-scientific publication format, to be accessible 
to those audiences.  It is common knowledge that people learn in different ways: visual, verbal, 
reading, doing, interacting, etc. Older people rely more on affect (emotions, reactions, memory 
triggers) and younger people on cognitive skills.  Therefore, the messages always have to be 
multi-modal. This paper draws heavily from the APHEIS Report and more generally from the 
knowledge generated throughout the repeated observations by psychologists, educators and 
social scientists who observe how people learn. 
 At the outset, it is helpful to identify key issues that warrant consideration:  (1) goals of 
the communication; (2) intended audience(s); (3) types of information to be used and/or 
conveyed (e.g., emissions, monitoring observations, health impacts, indicators); (4) scoping 
issues (e.g., geographic and temporal scale); (5) health effect measures (e.g., acute vs. chronic 
effects, body counts vs. life expectancy vs. quality of life, health care costs); (6) major 
substantive messages (e.g., what people can and should do, general information, trends, 
regulatory violations, health alerts); (7) vehicles through which to convey information (e.g., 
scientific papers, reports, press releases, websites—text and graphics, newsletters or other 
periodic communications, and presentations; and, (8) factors that affect perception of and 
behavioral reaction to this information (e.g., local vs. more broad-based data).  In addition, given 
the vagaries and idiosyncrasies of human populations, it is important that there be on-going 
evaluation of the transmission of the communications, its reception by the intended audiences 
and others, and their reaction, interpretation and planned responses.  In other words, one 
always should have an on-going assessment of how well the communication plan is or is not 
working.  I consider each issue, in turn. 

ANNEX B



  -- 2 -- 

(1) Goals of the Communication:  There can be as many goals as there are distinct 
audiences and issues to be addressed. These would include, for example, identifying data 
needs for the underlying purpose of the monitoring, trying to help the audience understand the 
main scientific and health issues of concern, if not the details, providing a context for comparing 
risks/hazards for potential policy development or funding decisions, and possible 
implementations, prompting individuals or communities to change behaviors or actions to 
reduce pollutant levels and/or health risks, and possible some measure of the response to these 
messages, to provide feedback to those who were targeted to take actions.  Messages may be 
crafted differently depending on which of the goals are most important.  For EPHT, critical goals 
are to provide to a non-technical audience with information that conveys differences in health 
impacts attributable to variations in air quality at a regional or local level, for possible policy 
considerations and protection of public health, and suggestions for actions that individuals can 
take.   

(2) Intended Audience:  There are many intended audiences.  While it might be most 
effective to develop separate messages for each audience, often this is not cost effective, 
although audience-specific messages can be developed and banked for future use. Therefore, it 
is important to look at the goals and locus of control of each audience to determine how best to 
group them in terms of targeting the messages.  The APHEIS Project conducted a careful 
review of this issue for their study.  Target audiences they considered include:  government 
policy makers and those who influence them, media, environmental and health professionals, 
industry and transport sectors (pollution source managers and workers), health care providers, 
the public, and vulnerable populations.  Each has a particular stake in this issue, as well as a 
different level of knowledge, experience and connection to the issues of health effects of air 
pollution.  In addition, one should consider scientific professionals from non-health fields, such 
as physicists and atmospheric scientists, who may have extensive technical knowledge but less 
direct experience with the health effects attributable to exposure to air pollution.  A further 
complexity in identifying audiences is that those with particular susceptibilities (e.g., children, the 
elderly, those with particular disabilities) may react more strongly to situations that directly affect 
their susceptibilities (e.g., people, with asthma or emphysema).  So, great care should be taken 
crafting strategies to communicate with high risk populations.   

Although all of these audiences have concerns about the health effects attributable to 
exposure to air pollution, each has different levels of concern, a different knowledge base, a 
different constituency and different primary goals.  These differences can affect what individuals 
want to hear about, how they interpret the specific information provided to them, the degree to 
which they believe that the specific information addresses their concerns, and the technical level 
at which the information can be understood.  For example, technical modeling results only rarely 
are appropriate for or understandable by most members of the public, but failure to provide 
details on model testing and validation to a scientist likely would raise concerns and doubts.  In 
spite of the complexity, it would be most effective to have several different messages with the 
same general core content, each tailored specifically to each group, highlighting their specific 
interests, goals and expertise.  Toward that end, APHEIS identified “four key objectives” that 
they apply to each audience:  identify the information needs, assess how well APHEIS is 
meeting those needs, understand what is needed to better meet the information needs, and 
develop a communication strategy to do so.  Initially, APHEIS decided to focus on one 
audience, government policy makers and influencers.  We recommend a similar strategy for 
EPHT but suggest that the initial focus be slightly larger, including the public as well as policy 
makers and influencers, given that public access was one of the goals of the Pew Report(Pew 
Environmental Health Commission 2000) and the Congressional funders.  

(3) Types of Information:  There are several types of messages that one may wish to 
deliver to each of the audiences.  For clarity, it is useful to determine specifically what type of 
information one wishes to convey, prior to focusing on the detailed content.  Some possibilities 
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include emissions data, ambient air monitoring observations, integrated/modeled emissions and 
ambient air data, suspected or observed health impacts, indicators (or combined summary 
measures) and the statistical uncertainties for each of these measures.  Each measure has 
strengths and limitations.  Direct monitoring data are viewed by some as the “gold standard,” 
because they reflect directly what is in the air we breathe.  However, they are costly to collect, 
and tend to have limited spatial and temporal coverage.  Emissions data reflect what is released 
to the environment, which is not directly relevant to exposures or health effects. However, these 
data can be used to model and estimate ambient levels of pollutants, and to do so at a higher 
spatial and temporal resolution than typically can be measured.  The models which estimate 
emissions or ambient levels can be merged with and calibrated to limited measurements, 
validated, and used to predict or forecast values over larger space-time domains, while also 
providing estimates of uncertainty and precision.  However, the results produced by models are 
sometimes seen as suspect, since they can be biased towards developers’ goals, and those 
biases, which may be unintentional, can be difficult to identify, even for technical experts.  Both 
models and monitoring data often are used for exposure evaluations and drive the health 
concerns.   

Health impacts focus on the public health consequences of exposure to ambient air 
pollutants.  Generally, this is of greater concern than the exposures themselves, but may be 
harder to assess, can involve multiple risk factors only some of which are air pollutants, and 
may take years to decades to manifest themselves.  Further, individuals with existing health 
conditions sometimes are more susceptible and respond to lower levels of and in a more 
extreme manner to the same exposures as healthier members of the public.  Impacts on 
individuals also can be mediated by other factors, such as the presence or absence of air 
conditioning.  Rather than relying on direct measurement of health effects, models can be used 
to estimate or project health effects, but also are subject to concerns of appropriateness, 
accuracy, reliability and validity, not to mention interpretability.  Finally, there are indicators, 
which are summary health or exposure measures, which typically provide space-time averages.  
These can be perceived as more limited in that generally they do not provide same resolution 
and variability as direct measurements but are much simpler in concept, construction, and 
interpretation.  Assessing the uncertainty variability and uncertainty in indicators can be quite 
difficult. 

One also might want to report regulatory compliance information, whether or not, and 
how often, levels meet or exceed specified standards or levels at which they are anticipated to 
cause health effects.  These relate to regulatory requirements rather than to health impact, but 
often regulations are designed to prevent health impacts and thus may be useful in addressing 
the underlying concerns.  Compliance data relatively easy to report but contain less information 
than most of the measures mentioned above. 
 (4) Scoping Issues:  Another important consideration in developing a communication 
strategy is determining the most appropriate space and time scales with which to report the data 
and effects.  Often, more than one may be appropriate. For example, one may want to use a 
national map for context, but then provide insets of areas of particular regions or localities of 
interest or concern.  Similarly, with time, one may want to provide data portraying long-term 
trends (e.g., weekly, monthly or yearly), but also show short term variability (e.g., daily or hourly) 
when the amount and rate of change of air pollutants is greater, such as for Summer months.  It 
may be particularly helpful to include for some of the measures the space-time scales that are 
used by some of the standards and regulations, such as particular averaging times for reporting 
air pollutants.  For example, ozone of is reported based on one-hour and eight hour averaging 
times, but one might also want to consider daily, weekly, monthly, seasonal and annual 
averages.  One also needs to explain what “averaging time” means.  Again, decisions for the 
space-time scales likely vary according to the audience one is trying to reach, the particular 
questions of concern, and the audience’s degree of technical background.  Some testing of the 
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audiences’ goals and appreciation of different space-time scales may help immeasurable in 
designing effective communication. 

(5) Health Effect Measures: There are various considerations necessary in reporting on 
health effects. First, one has to determine the type of effect one wishes to evaluate, for example 
morbidity (e.g., breathing problems) vs. mortality (e.g., death), and acute (e.g., myocardial 
infarction) vs. chronic (e.g., lung cancer) end points, depending on the nature of the particular 
concern.  One also needs to decide whether to report for the whole population, the most 
sensitive subgroup (e.g., those with active lung disease), or those of greatest concern to the 
larger population (e.g., children).  Within each of these realms, one also needs to consider what 
information is most useful and/or interpretable.  For example, for a long time, researchers 
reported the number of deaths attributable to air pollution (i.e., the body counts) as the most 
striking formulation.  However, more recently researchers have begun to consider more detailed 
aspects of impact, such as not simply whether someone is thought to have died prematurely 
from air pollution, but also how prematurely they died (i.e., how may years early) or years of life 
adjusted for disabilities (DALYs) or quality (QALYs) and other types of Health Adjusted Life 
Years (HALYS).  Some question the validity of these more detailed measures, while others 
argue they better capture people’s feelings and experiences (McMichael, Anderson et al. 1998; 
Gold, Stevenson et al. 2002; Arnesen and Trommald 2004; Brunekreef, Miller et al. 2007)  
Another measure, of particular interest to policy makers, is the health care costs likely to be 
incurred (or saved) as the result of changes in the levels of air pollutants, both with respect to an 
individual and a population.  Choosing among these often depends on the audience, the 
context, the particular pollutant of concern, the characteristics of the population under 
consideration, and the intended use of the data. 

(6) Major Messages: In developing messages for a communications program, one must 
be clear about what message one wishes to deliver, and what response one would like to elicit.  
For example, the objective may be to provide the community with information about the 
environmental status of their community.  There may not be clear data available on health 
effects, but they are likely to appreciate changes or trends in background levels of certain 
substances so that when health effects data become available they will have a context from 
which to compare their community with others.  Or, the goal may be to provide information 
about hazards they are likely to encounter, small though they may be, and let the community 
decide how they want to respond to them.  In more serious pollution situations, with compounds 
of known health consequences, the objective could be to encourage individuals to take personal 
actions to limit exposure, and the community to advocate for political action because they are 
being affected disproportionately.  Providing context about regulatory compliance may be 
helpful, so that they can decide whether or not action or mitigation is appropriate and/or 
necessary, and if the current regulations are sufficiently protective, in their view.  Finally, helping 
people understand the meaning and implications of air pollution alerts, and the benefits of 
behavior changes can lead to reductions in exposures through changes in personal behaviors 
and well as more broad-based actions.  All of these options require careful thought and 
consideration as they each have consequences, as does failure to alert people to these issues. 

(7) Vehicles through which to Convey Information:  One of the most critical 
considerations in any communication strategy is how to present the information in a manner that 
is clear, comprehensive, accurate, precise, understandable and relevant to the concerns at 
hand, with some indication of reliability or uncertainty.  At the outset, the APHEIS 
report(APHEIS 2004) suggests that it is important that scientific papers be available as primary 
sources as well as back-up and/or support for communications.  They suggest that 
communications should include a variety of vehicles, including complete scientific reports, 
summary scientific reports, peer-reviewed scientific papers, brochures with a policy focus, 
PowerPoint presentations with a scientific focus, PowerPoint presentations with a policy focus, 
Q&As/FAQs with a scientific focus, Q&As/FAQs with a policy focus.  They also suggest that 
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presentations should include, “a few key messages presented simply and clearly in easy-to-
understand terms, using bullet points and supported, when appropriate, by simple graphs, 
charts and/or tables.”  One of their respondent groups suggested that, “reports should use 
simpler language, and more boxes, graphs, maps and colors.” 
 We strongly believe that the use of simple, clear maps, charts and graphs can be among 
the most effective ways to present information, and make it relevant to audiences.  However, it 
requires substantial work to achieve an acceptable standard for these displays to useful and 
convey the appropriate information, and these displays may be supported by a small of bullets 
highlighting key features, a brief narrative or discussion, and suggestions for where to get more 
information.   

A substantial literature documents many of the mistakes that have been made in 
developing displays(Tufte 1990; Monmonier 1997; Tufte 2001), and presenters must be careful 
not to repeat these mistakes, both for credibility and to be effective communicators.  There are 
well researched methods that can be used to make effective displays, from using 
understandable color combinations on maps, even for audiences with colorblind members,  
(www.colorbrewer.com) and to using formats that highlight specific aspects of the display.(Bell, 
Hoskins et al. 2006)  One asset of maps is that viewers usually like to identify the area where 
they live, as a way a validating one aspect of the display.  Maps often make people feel more 
comfortable than do scientific charts and tables because we all are used to reading road maps 
and have experience interpreting features and patterns on them.  The perception of familiarity 
and simplicity makes them particularly good and effective vehicles for communication. Yet, 
maps that try to present too much information and require cognitive reasoning based on multiple 
pieces of information derived from maps can frustrate users and block the intended message of 
the communication.  This is an approach that requires special attention to detail, and in depth 
review by both technical and non-technical staff, and ideally a small sample of the intended 
audience. 

Figures 1-8 demonstrate some of the strengths and weaknesses of displays.  These 
examples were not chosen because they are particularly good or bad examples.  Rather, they 
are chosen to show that even the best displays have limitations or weaknesses and even the 
worst displays have strengths and can convey important information.  They are provided to 
show some real world examples from which we can learn, copying features from some, and 
modifying our displays to avoid problems with others. 

Figures1 and 2, taken from EPA websites, display two aspects of air pollution 
information.  Figure 1 shows the trend in time of air pollution with a measure of variability across 
sampling sites.  However, from this simple and easy to interpret graph, it is not possible to infer 
where the sample sites are, whether the high areas are close to one another, nor how variable 
each individual site is (i.e., is the variability due to consistent differences among the same sites, 
each of which is fairly stable, or are all sites highly variable, and in an unpredictable pattern?)  

Figure 2 depicts areas of regulatory attainment within one of EPA nine administrative 
regions.  As with Figure 1, this map conveys a relatively simple message but without much 
outside context.  For example, it does not address the stability of the pattern depicted, at what 
scale is it evaluated, are there any short, medium or long term variations that increase, 
decrease or change the locations of the non-attainment areas.  Perhaps a series of seasonal or 
annual maps would help clarify this, or inclusion of a small time trend plot for one of the areas. 

Figure 3, from the APHEIS Project, has a more complex message, providing 
comparisons across a number of cities and also showing the impact of, but not describing on 
the graph, data adjustments.  This was targeted for a more technical audience, for whom it 
conveys a wealth of information about two different pollutant measures, their geographic and 
statistical variability, their comparability or correlation.  For the public, it might display useful 
information about a particular city, and how it compares to the others, but the complex of lines 
may make it more difficult to decipher.  It would be helpful to know in a few words in what way 
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were the PM10 values corrected, and how and from what were the PM2.5 values computed.  The 
title does explain that the data are annual.  It is interesting that for variability or uncertainty the 
5th and 95th percentiles are shown along with the central tendency, but it is surprising that the 
central tendency is not analogously the central distributional value (i.e., the median) but rather 
the arithmetic mean.  While the names of the cities are provided, an inset map of the locations 
of those cities would make the graph more generally accessible for comparing among cities and 
assessing whether there are broad, regional patterns, possibly suggesting transport mediated 
effects, or much variation among neighboring cities, suggestion effects due to local sources. 

Figures 4A and 4B show considerations that must be addressed in mapping:  whether to 
adjust mapping areas to reflect population characteristics (e.g., using a cartogram) and the 
scale of data display or averaging, which can result in different interpretations from the same 
base data. Figure 4A is a choropleth map that shows reported percentages for each geographic 
unit (state) based on its true geographic boundaries.  The values are grouped by color into six 
ordered categories for simple evaluation.  However, because the data reported only are 
percentages, one has no idea whether in a given state they represent 1, 10, 100, or 10,000,000 
voters.  Figure 4B shows a cartogram of the same data, with the identical color coding for each 
state, but the area of the state is scaled to the size of the states’ population, while also trying to 
maintain its approximate shape for recognizability.  Note that given our current voting system, 
the choropleth map is more relevant for Electoral College voting (all of each state’s electoral 
votes are awarded to the candidate that has the most votes within that state), while the 
cartogram is more relevant for the popular vote (each individual vote is awarded to the 
candidate chosen, irrespective of the votes of others in a given state). 

Figure 5 shows the impact of the spatial scale of the data on patterns and interpretation.  
For an evaluation of housing age, we obtained US Census housing age data at the census 
block group level, and mapped them as obtained.  Next, we combined the values for all the 
block groups contained within a zip code and mapped these data.  Finally, we combined values 
for all the block groups within a county and mapped these values.  Note that even a cursory 
visual examination shows markedly different patterns, although the most broad-scale patterns 
remain. 

Figure 6 shows a plot that demonstrates the association of two variables, demonstrating 
how removal of lead from gasoline, a policy intervention, is associated with decreasing 
childhood blood lead levels, a health effect measure.  This approach is most appropriate for 
EPHT “data linkage” studies.  It would have been helpful if the figure included information about 
the number of children upon which the graphs are based, to describe the statistical variability of 
the numbers, as well as some of the demographic characteristics of the children, to help with 
interpretation and applicability to subpopulations.  However, much of this information is available 
in the reference that is listed in the figure. 

Figures 7 and 8 are examples of a very rich but complex display method called linked 
micromaps.  Due to their complexity, these are more appropriate for technical experts rather 
than the general public.  What this formulation does is:  (a) display the central value and 95% 
confidence interval for two specified measures, separately, allowing for comparison of their 
values across all 50 states; (b) shows the association of these two measures by plotting the 
measures for the same state next to each other; and, (c) shows the geographic context of these 
data by highlighting similar values in the adjacent map, that shows in color small subsets of 
states that have similar values, states that have greater values for the primary (left most) 
measure, showing on the map higher values in white and lower values in grey.   

For specific messages, one needs to determine what is of greatest importance, and the 
identification of the graphic approach that highlights this most effectively.  One particularly 
important aspect of these plots is that they show confidence intervals for the central values for 
each geographic unit.  I do not know of any method that shows clearly the geographic 
distribution of confidence intervals, and particularly not for two variables simultaneously.  The 
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issue of confidence intervals, and uncertainty, is an important issue to address, but one that 
often gets overlooked in mapping applications. 

Finally, one may want to consider various modes of transmission of the information, from 
print (e.g., fact sheets) to electronic (e.g., web pages) to oral (e.g., public service 
announcements), how to balance descriptive information with quantitative information and 
graphics, and whether displays should be static or interactive.  These all have advantages and 
disadvantages.  The specific application of linked micromaps shown here is from an interactive, 
public website maintained by the National Cancer Institute.  One could develop a similar venue 
for various air pollutants and demographic characteristics national, at the county level. 

 (8) Factors that Affect Perception of this Information:   
 A substantial amount of research has been conducted on the issue of what factors 
external to a presentation or display affect the perception of the information depicted, to help 
guide those wishing to effectively communicate specific information or messages.  For example, 
investigators have considered what is heard in presentations and how people react to it based 
on the characteristics of the audience, such as gender and race(Johnson 2002; Johnson and 
Chess 2003) as well as the local context of the problem(Bickerstaff and Walker 1999; 
Bickerstaff and Walker 2001; Howel, Moffatt et al. 2002) and other factors.  Other investigators 
have considered the formats in which the data are presented, such as the Pollutant Standards 
Index (PSI)(Johnson 2003), and the utility of comparisons to existing standards or 
benchmarks.(Johnson and Chess 2003)  Some investigators have looked at whether such 
information is likely to result in changes in personal behavior.(Skov T., Cordtz T. et al. 1991)  
Still others have studied the ways the public links air pollution to health effects.(Howel, Moffatt et 
al. 2003)  Depending on one’s purpose, one might want to use this information in guiding the 
structure and content of a presentation.  One way to address this most directly is, when 
designing indicators for the public, to work directly with the public.(Elliott, Cole et al. 1999)  After 
all, they ought to be the best gauge of what they want to know, and how well the message is 
being delivered. 
 In addition, one must consider the structure, format and content of presentation and 
display.  As noted above, issues including text vs. graphs vs. maps are important, as well as the 
style, color, geographic and temporal scope.  Perceptions may differ if the material presented is 
spoken, if it includes visual aids (e.g., graphs or maps), if there are handouts available during 
and/or after the presentation that summarize or explain further the main points that are 
presented.  Again, what approaches work best varies greatly among audiences.   
 Evaluation:   
 The only way to be sure that the desired message is both believed and received as 
desired is to evaluate whether the desired audience has gotten and understood the message.  
Approaches for doing this efficiently and effective are complex and should be the subject of a 
separate essay.  However, without this direct validation, one cannot be sure that one had done 
an adequate job in conveying the information.  This evaluation should involve some members of 
audience so that they can articulate clearly from the perspective of those affected, what is 
needed, what worked in this specific context, what didn’t, and why.  This should help 
researchers better understand the process and how to improve their efforts over time and 
across multiple audiences. 
  Final Recommendations:   

From this overview of issues in the communication of air pollution and health impact 
data, it is clear that research is limited, approaches used vary widely, and interpretations differ 
both within and between methodologies.  As both concerns and interest grow, it is important that 
additional research be conducted to better understand how to identify the best strategies to 
communicate the desired messages and engage audiences, and how to evaluate the 
effectiveness of the communication approaches. 
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Figure 1:  USEPA:  Trends in PM2.5   (http://www.epa.gov/air/airtrends/pm.html ) 
 

 

National Trends in Particulate Matter Levels 

Using a nationwide network of monitoring sites, EPA has developed ambient air quality trends 

for particle pollution, also called Particulate Matter (PM). Trends from 1990-2007 are shown 

here for PM2.5 and PM10. Under the Clean Air Act, EPA sets and reviews national air quality 

standards for PM. Air quality monitors measure concentrations of PM throughout the country. 

EPA, state, tribal and local agencies use that data to ensure that PM in the air is at levels that 

protect public health and the environment. Nationally, average PM concentrations have 

decreased over the years. For information on PM standards, sources, health effects, and programs 

to reduce PM, please see www.epa.gov/air/particlepollution. 
 

How to Interpret the Graphs 

 

 
 
 
 
 
 
 
 
 
 
 
 

The blue band shows the distribution of air pollution levels among the trend sites, displaying the 

middle 80 percent. The white line represent the average among all the trend sites. Ninety percent 

of sites have concentrations below the top line, while ten percent of sites have concentrations 

below the bottom line. 
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Figure 2:  USEPA Region 9:  Ozone Attainment Areas  
(http://www.epa.gov/region9/air/maps/r9_o3.html) 
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Figure 3:  APHEIS Sept. 2006 
Apheis 3: HIA of long-term exposure to PM2.5 in 23 European cities (http://www.apheis.net/ ) 
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Figure 4A:  A Choropleth Map of Voting Percentages 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.…… 
 
 
 
 

Figure 4B:  A Cartogram of Voting Percentages 
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Figure 5:  Comparative Maps of the Same Data at Different Spatial Scales (Elliott and 
Wartenberg 2004) 
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Figure 6:  The Impact of Removal of Lead from Gasoline—A Data Linkage Display(Pirkle, Brody 
et al. 1994) 
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Figure 7:  Linked Micromap Sorted by Exposure(Carr, Wallin et al. 2000; Carr 2001; Bell, 
Hoskins et al. 2006) 
 
(http://statecancerprofiles.cancer.gov/micromaps/ ) 
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Figure 8:  Linked Micromap Sorted by Mortality Rate(Carr, Wallin et al. 2000; Carr 2001; Bell, 
Hoskins et al. 2006)  (http://statecancerprofiles.cancer.gov/micromaps/ ) 
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The Apheis Project 
Air Pollution and Health - A European Information System 

www.apheis.org 
 

Sylvia Medina1, Alain Le Tertre1 and Michael Saklad2 
1Institut de Veille Sanitaire, Saint Maurice, France, 2Saklad Consultants, Paris, France 

 

Introduction 
 

The Why: What’s the problem we face? 
 

Air pollution continues to threaten public health 
Numerous studies and the lack of effective policies reveal that air pollution continues to threaten 

public health in Europe today.  As but a few examples: 

1. A study (Künzli et al., 2000) published in The Lancet revealed that roughly 40,000 people were 

dying every year from the effects of air pollution in three European countries alone, costing them some 

€50 billion annually (Sommer et al., 2000). 

2. The Cost-Benefit Analysis of CAFE (Clean Air For Europe) (2005) estimated: 

• 3.7 million years of life lost each year (based on the year 2000) associated with current exposure to 

PM2.5 across the European Union’s 25 countries 

• Or 348,000 estimated premature deaths in Europe every year 

• 100,000 cases of respiratory or cardiac hospital admissions 

• 30 million respiratory medication use days 

• Several hundred million restricted activity days each year 

3. On December 12, 2007, according to its press release, “The European Parliament adopted a 

second-reading legislative report which provides the maximum concentration levels for PM2.5. The 

report is the basis of an agreement with the Council on a directive on air quality (CAFE Directive).” 

Commenting on the proposed CAFE Directive, scientists had previously said, “As it stands, this 

new Directive would mark a serious reduction in public-health protection from air pollution within the 

Member States, with health impacts amounting to thousands of premature deaths per year.”  (Declaration 

on Need for Stricter European Regulation of Air Pollution, ISEE-ISEA and IRS Munich and Paris, 

September 4, 2006). 
 

Key users still lack vital information 
Before the Aphea research program began in 1993, European policy makers who directly 

influence the reduction of air pollution and its impact on health relied mainly on American research for 

their information.  This was because little European data was available.  They also relied on individual 

studies that did not use common methodology. As a result, they could not compare research findings and 

draw synthetic conclusions. 

The Aphea program (Short-term Effects of Air Pollution and Health: A European Approach) 

solved these problems by providing new, reliable European research data on the effects of air pollution on 

public health; and by instituting a standardized, common methodology across different countries 

(Katsouyanni et al., 1996, 2001) 

However, being limited in time, Aphea was not designed to provide information for 

environmental-health professionals on an ongoing basis. 

In addition, policy makers, healthcare providers, patient organizations and the general public 

lacked both information on the impact of air pollution on health and the communications tools that deliver 

that information to them, all tailored to their specific needs. 
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The What: How did we propose solving the problem? 
Given this situation, we designed the Apheis program (Air Pollution and Health – A European 

Information System)
1
 to expand knowledge and understanding among all these audiences of the impact of 

urban air pollution on health by providing them with an up-to-date, easy-to-use information resource on 

the subject.  The goal remains to help them make better-informed decisions about the political, 

professional and personal issues they face in this area. 

 

The How: Twenty-six centers across Europe gather and analyze information on 
an ongoing basis, and communicate it to key audiences 

Apheis developed a public-health surveillance system (Teutsch et al., 1994) to provide 

information at regular intervals on the effects of air pollution on health tailored to the needs of its 

audiences.  

For this purpose, Apheis built on previous, extensive experience acquired in France creating 

information systems on air pollution and public health: 

• The ERPURS program (Medina et al., 1997), which has monitored the effects of air pollution on public 

health in the Paris metropolitan area since 1994 

• The subsequent PSAS program, which began in 1997 (Quénel et al., 1999, Host et al, 2006). 

The Apheis public-health surveillance system specifically: 

• Quantifies the effects of air pollution on public health at the local and European levels 

• Assesses the importance of factors that can influence concentration-response relationships 

• Delivers standardized, periodic reports on the impact of air pollution on public health. 

 

Apheis 1 
During its first phase starting in 1999, Apheis achieved two key objectives: 

• It defined the best indicators for health impact assessment (HIA) of the effects of air pollution in 

Europe.  For this purpose, Apheis created five advisory groups in the fields of public health, health-

impact assessment, epidemiology, exposure assessment and statistics.  These groups drafted guidelines 

that defined the best indicators for public-health surveillance and provided standardized protocols for data 

collection and analysis.  

• It identified those entities best able to implement the surveillance system in the 26 cities in 12 European 

countries participating in the program (Figure 1); understood how the different entities could work 

together on the local, national and European levels; and assessed each entity’s ability to implement an 

HIA of particulate pollution using the guidelines drafted by the advisory groups (Medina et al, 2001). 

 

Apheis 2 
During its second phase, Apheis implemented its organizational model (Figure 2). Among other 

tasks Apheis also used its public-health surveillance system to conduct an HIA of PM10 and black smoke 

(BS), applying the above guidelines to gathering and analyzing pertinent data.  For the HIA, Apheis 

provided all the centers with HIA methods and tools and a template for the city-by-city HIA reports. 

This first HIA found between 544 and 1,096 “premature” deaths that could be prevented annually 

if, all other things being equal, short-term exposure to outdoor concentrations of PM10 were reduced by 5 

µg/m
3
 in Apheis cities.  On the other hand, the expected benefits of reduction in mortality in the long-

term were still greater. The HIA estimated that, all other things being equal, between 3,368 and 7,744 

“premature” deaths could be prevented annually if long-term exposure to outdoor concentrations of PM10 

had been reduced by 5 µg/m
3
 in each city. Apheis published the findings of this work in its second year 

report (Medina et al, 2002) and in a scientific paper (Medina et al, 2004).  

                                                 
1
 Apheis is co-funded by the Pollution-Related Diseases Program of the DG SANCO of the European Commission (contracts n° 

SI2.131174 [99CVF2-604], SI2.297300 [2000CVG2-607] and SI2.326507 [2001CVG2-602]) and participating institutes 
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Apheis 3 
In its third phase, 2003-04, Apheis initiated the development of a communications strategy and 

updated its HIAs through its public health surveillance system. 

 

Developing an Apheis communications strategy 

 

“The DETR (UK Department of the Environment, Transport and the Regions) has had 

little success ensuring that anyone takes notice of the information provided.” − Dr. 

Erik Millstone, Science and Technology Policy Unit, Sussex University 

 
As already stated, the Apheis program seeks to meet the information needs of a wide range of 

individuals and organizations concerned with the impact of air pollution on health in Europe; and as a 

first step the needs of those individuals who influence and set policy in this area on the European, 

national, regional and local levels.  

Like other providers of scientific information, however, Apheis had reason to believe that its 

many audiences, and this one in particular, were making little use of the scientific reports it produces. 

To ensure it meets the needs of policy advisors and makers, Apheis decided to develop a 

communications strategy based on learning directly from its members this key audience’s needs and the 

usefulness to them of the Apheis 2 report. 

For this purpose, Apheis interviewed 32 individuals who influence or set policy on air pollution 

and health in the UK and Spain and who are active in the fields of public health and the environment. 

Through this research Apheis sought to describe this audience’s information needs as accurately 

as possible; and then produce recommendations for developing communications tools that would help the 

audience’s members best understand, absorb, process and act on the information Apheis provides. 

Our research showed in particular that (Figure 3): 

• Policy advisors and makers are generally unlikely to use the scientific reports we develop as is, contrary 

to scientists 

• A long, complex chain comprising many players leads from the scientists to whom we distribute our 

reports directly, and who use them, to the policy makers who ultimately have the greatest effect on public 

health, but who only receive our reports indirectly and use them rarely, if at all 

• Each of our two audiences of scientific and policy users has different problems to solve, different levels 

of scientific knowledge and different cultures, and different ways of processing information for 

themselves and for pass-on users, meaning each audience has different information needs. 

Based on this evidence, we concluded that Apheis needs to act proactively to: 

• Apply this knowledge to the way it shapes and delivers its information and messages by developing a 

range of communications tools that goes beyond our comprehensive scientific reports to include summary 

reports, brochures, presentations and Q&As whose focus, content and form are tailored to the separate 

information needs of scientific and policy users 

• Ensure that the information needed by policy advisors and makers actually reaches them. 

Taking these steps should greatly enhance the way Apheis communicates with the key audiences 

that set policy on air pollution in Europe, and thus help Apheis contribute better to improving public 

health. 

 

Update Health Impact Assessment 
 

Tables 1 and 2 summarize the HIA scenarios performed in Apheis 3. Again, for the HIA, Apheis 

provided all the centers with HIA methods and tools and a template for the city-by-city HIA reports. 
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Key HIA findings 
During Apheis 3, we updated the estimates of the effects of air pollution on health.  We 

established new all ages respiratory concentration-response functions (C-R functions) suitable for HIA.  

We introduced methodological innovations to improve the estimated impacts of short-term changes in 

exposure to air pollution.  And we calculated reduction of life expectancy, beside the absolute number of 

cases, to estimate the health impacts of long-term exposure to air pollution. 

 Apheis 3 revealed that in the 23 cities measuring PM10, totalling more almost 36 million 

European inhabitants, all other things being equal, if exposure to outdoor concentrations of raw PM10
2
 

was reduced to 20 µg/m
3
 in each city, 2,580 “premature” deaths (including 1,741 cardiovascular and 429 

respiratory deaths) could potentially be prevented annually if the impact estimation is limited to 2 days of 

follow-up. The short-term impact cumulated over 40 days was more than twice as large, amounting to 5 

240 total deaths (including 3,458 cardiovascular and 1,348 respiratory deaths).  

Long-term effects of pollution reduction were even higher. Our HIA estimated that all other 

things being equal, reduction of long-term exposure to corrected PM10
3
 to 20 µg/m

3
 in each city would 

result in prevention of 21,385 “premature” deaths annually. 

Stated otherwise, for both total and cause-specific mortality, the benefit of reducing converted 

PM2.5
4 
levels to 15 µg/m

3
 was more than 30% greater than for a reduction to 20 µg/m

3
. However, even at  

15 µg/m
3
, a significant health impact was expected. In terms of life expectancy, all other things being 

equal, if the annual mean of PM2.5 converted from PM10
4
 did not exceed 15 µg/m

3
 in the 23 cities 

measuring PM10, the expected gain in life expectancy of a 30-year-old person would range, on average, 

between 2 months and 13 months, due to reduced risk of death from all causes. An example of the impact 

in terms of life expectancy in Seville is shown in Figure 4. 

For those wanting to know the contribution of air pollution to the total burden of mortality, in the 

Apheis cities particulate pollution contributed in a non-negligible manner to this burden as follows:  

• All other things being equal, when only considering very short-term exposure, the proportion of all-

causes mortality attributable to a reduction to 20 µg/m
3
 in raw PM10 levels would be 0.9% of the total 

burden of mortality. This proportion would be greater, 1.8%, for a cumulative short-term exposure up to 

40 days. Effects of long-term reduction in corrected PM10 levels would account for 7.2% of the burden of 

mortality. 

• For long-term exposure to PM2.5 converted from corrected PM10, all other things being equal, the 

proportion of all-causes mortality attributable to a reduction to 20 µg/m
3
 in converted PM2.5 levels would 

be 4% of the total burden of mortality. 

 Apheis also rose that from the public health perspective, the health impact of daily exposure to air 

pollution on the long run is much higher than the exposure to air pollution peaks (Figure 5). 

 
Interpretation 

In order to provide a conservative overall picture of the impact of urban air pollution on public 

health in Europe, like its predecessor Apheis 2, the Apheis 3 program used a limited number of air 

pollutants and health outcomes for its HIAs. 

Apheis 3 also established a good basis for comparing methods and findings between cities, and 

explored important HIA methodological issues through sensitivity analyses to gain a better sense of the 

overall uncertainty of our estimates (WHO 2000, 2001, Le Tertre et al. 2005). 

                                                 
2
 For HIAs of short-term exposure, we used raw PM10 and BS levels measured directly at monitoring stations 

3
 For HIAs of long-term exposure, because the exposure-response functions used are taken from a publication that 

used gravimetric methods (Pope et al. 2002), for consistency we had to correct the automatic PM10 measurements 

used by most of the cities by a specific correction factor (local or, by default, the European factor of 1.3) in order to 

compensate for losses of volatile particulate matter. 
4
 For most of the cities, PM2.5 measurements were not available, and PM2.5 levels had to be calculated from PM10 

measurements. For this purpose a conversion factor (local or, by default, the European factor of 0.7) was used. 
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Below we discuss these methodological considerations as they apply to exposure assessment; 

health outcomes and baseline rates; and concentration-response functions. 
 

Exposure assessment  
Our HIA findings depend directly on the levels of particulate pollution measured. These levels 

vary widely as a function of the number and location of the monitoring sites, the analytical methods used, 

and the sites selected for our HIA. 

  In order to harmonise and compare the information relevant to exposure assessment by the 26 

Apheis cities, the exposure measurements used in Apheis 3 were interpreted in accordance with the 

Apheis guidelines on exposure assessment prepared by the exposure assessment advisory group. In 

specific we verified the total number and type of monitoring stations and the number used for HIA 

purposes; the measurement methods; the use of a correction and/or conversion factor; and the quality 

assurance and control, and data quality. 
 

Measurement intervals for air quality indicators  

Because the C-R functions selected for HIAs of short-term exposure use the 24h average 

measurement interval, the Apheis guidelines recommended 24h averages for PM10, PM2.5 and BS, and 

the Apheis cities complied with the given recommendations for all monitoring stations. For HIAs of long-

term exposure, the C-R functions selected used annual levels, so the Apheis cities did likewise. 
 

Number of stations and site selection  
Altogether 142 monitoring stations were selected for HIAs in accordance with the Apheis site-

selection criteria. In a few cities, only one or two stations were used, but these were background stations 

and could reflect minimally the population exposure. In three cities, 28 stations were classified as directly 

traffic-related and should theoretically be excluded for HIA calculations. Despite this, the data from these 

stations was used for HIA because: 1) local experts considered the data from the stations was the most 

representative of the population’s exposure in those cities; 2) C-R functions used for HIA of short-term 

exposure used these direct traffic-related stations, although it was not the case for studies selected for 

HIAs of long-term exposure. 
 

Measurement methods  
The Apheis centers reported the PM10/PM2.5/BS/TSP measurement methods in full, and used 

automatic PM10 measurement methods (the ß-ray absorption method and the tapered oscillating 

microbalance method [TEOM]). PM2.5 measurements were done only by TEOM.  Reflectometry is the 

commonly used measurement method of BS. TSP was measured by ß-ray absorption method in one city 

and by gravimetric method in the second. 

Local or, by default, European correction factors for PM10 were used for the purpose of long-

term HIAs in order to compensate for losses of volatile particulate matter. In general, local conversion 

factors were slightly lower than the European factor of 1.3 recommended by the EC working group on 

Particulate Matter. 

Beside this correction factor, conversion factors (local or European) were given for calculating 

PM10 from TSP measurements, as well as for PM2.5 data calculated from PM10 measurements. As a 

reminder, the default factor of 0.7 for PM2.5 was recommended by the Apheis Exposure Assessment 

working group. For Apheis cities that could compare both the annual mean levels of PM2.5 directly 

measured and PM2.5 converted from PM10 calculated using the European conversion factor (0.7), in 

most of the cities the annual mean level of PM2.5 measured directly was a little lower than the annual 

mean level of PM2.5 converted from PM10 calculated using the European conversion factor. 
 

Overall, the assessment of exposure data in Apheis 3 was sufficiently reliable for our HIA 

purposes. 
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Health outcomes 

The Apheis centers provided a full description of the health indicators used for Apheis 3, the type 

of sources, the coverage, the existence of a quality-control program, the type of coding used, and the 

completeness of the data. 

 
Mortality data  
The information sources for mortality data were the national, regional or local mortality registries 

for all the cities. In Apheis 3, cause-specific mortality was included beside all-causes mortality to enrich 

the mortality picture. But all-causes mortality remains our first choice, because it is more robust, not 

subject to misclassification and easier to obtain. 

Because most of the cities applied a quality-control program and because of the low percentage of 

missing data for all-causes mortality, we consider that erroneous entries in the selection of cause of death 

did not affect the comparability of the data between cities. 
 

Hospital admissions data 
To estimate the acute effects of short-term exposure to air pollution on hospital admissions, in 

each city we selected hospital admissions for residents with discharge diagnoses of respiratory diseases 

(ICD9: 460-519; ICD10: J00-J99) and cardiac diseases (ICD9: 390-429; ICD10: I00-I52). Whenever 

possible, only emergency admissions were selected as more specifically related to air pollution, and 

discharge diagnoses were used in all cases because they are more reliable. 

All the cities obtained the data from registries. The completeness of the registries on hospital 

admissions was quite high, 95% or more in 18 of the 22 cities.  

All the registries run a quality-control program, and completeness in the diagnosis for the cause 

of admission was high, with a percentage of missing data of 1% or lower for 19 of the 22 registries. 

The main problem for comparability remains the difference in the availability of information in 

the registries, because some cities used emergency admissions, while others that lacked this information 

used general admissions.  

Methodologically speaking, statistical analyses of the Aphea 2 cities showed no significant 

heterogeneity in the estimated relative risk (RR) of hospital admissions between cities that reported 

general hospital admissions and those that reported emergency hospital admissions only (Atkinson 2001, 

Le Tertre 2002).  This might seem initially surprising but in fact is very reasonable.  General admissions 

include both planned and emergency admissions, and when controlling for season we also control for 

general trends for both admissions, and finally what is left is emergency admissions and some 

background noise.   

Nevertheless, this raises an issue for HIA if general admissions are used rather than emergency 

ones and the same RR is applied.  We should investigate the possibility of using a correction factor from 

emergency admissions and apply it to general admissions. There is also a need to examine this and other 

approaches on how best to handle the difficult situation of HIA when baseline data is unknown, missing 

or collected in different ways.   
The analysis of health data quality and availability concluded that, for local use in each city, the 

selected data was reliable. When comparing findings between cities, the data was fully comparable for the 

selected categories of mortality. Nevertheless, even if most of the cities have hospital data from registries 

that use a quality-control program, such comparability was limited, however, for the incidence of hospital 

admissions.  The incidence rates from emergency and total admissions (Figure 6) appear not to be fully 

comparable. Consequently, we presented data for hospital admissions and the resulting HIAs in the city-

by-city reports only. In an upcoming new phase of the program Apheis will investigate the influence of 

health-care and health-monitoring systems on morbidity data for HIAs . 
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Concentration-response functions 
 Most HIAs, including ours, use overall estimates from multi-centre studies.  But in some cases, 

people prefer to use city-specific estimates when they conduct an HIA in a particular city where an 

epidemiological study has been done that provides local E-R functions.  This issue of using alternatively 

city-specific estimates has been discussed in Apheis and the statistical advisory group conducted a 

sensitivity analysis using different effect estimates (Le Tertre et al. 2005).  

 
Sensitivity analysis using different types of estimates 

The Apheis statistical advisory group conducted a sensitivity analysis in some cities to address 

the issue just mentioned and used different effect estimates (observed city-specific, shrunken city-

specific, pooled, mixture of shrunken city-specific and adjusted for effect modifiers) to calculate the 

number of “premature” deaths in each city.  The study concluded that, although the sum for 21 European 

cities of the deaths attributable to PM10 is not strongly influenced by the method used to estimate 

Relative Risks (RRs), this is not true at the city level. 

Applied to a single city, the different estimates tested present benefits and limits, and based on 

these limitations the authors recommended the use of the shrunken estimate in cities for which this option 

is available. Use of this shrunken estimate enables deriving the overall estimate at the local level by 

combining information from the city-specific estimate and the overall one, and can be considered as a 

weighted mean between these two estimates. Its use also reduces the variability of the local estimate by 

incorporating information from other cities. However a key disadvantage of such an estimate is that it can 

only be applied in cities that are part of the initial multi-center analysis. 

Figure 7 shows the estimated density for each of the shrunken estimators (i.e., in each city). 

Superimposed is the estimated distribution of the pooled estimate (i.e., Overall), based on the random 

effects model, and the estimated mixture distribution of the Empirical Bayes estimates across all the 

cities.  Substantial departures from the population mean (overall) estimate can be seen in several cities. 

The underlying distribution of the Empirical Bayes estimates displays the same mean as the pooled 

estimate, but it is more flat, reflecting the heterogeneity between cities. Consequently the corresponding 

95% credible interval for the Relative Risk for total mortality associated with a 10 µg/m
3
 increase in 

PM10 (0.994, 1.014) is larger than the one derived from the pooled estimate (1.002 to 1.006). 

The statistical advisory group recommends the use of an estimated mixture distribution of the 

shrunken estimates that will give the same central estimate as the overall pooled one but with a larger 

confidence interval, avoiding excessive certainty suggested by naïve approaches to risk assessment. The 

use of this type of estimate will be proposed at the city level in the next HIAs.  
When building our own C-R functions on respiratory admissions all ages, we used the Aphea 2 

methodology (Katsouyanni et al 2001) based on time series analysis taking into account the problems 

with GAM raised by NMMAPS (Dominicci et al. 2002) and investigating the sensitivities of the 

estimated pollution effects by using alternative smoothing techniques, parametric and non-parametric, and 

by using a range of smoothing parameters. Since we use aggregated data in Apheis, we prefer using a 

time-series approach instead of case-crossover analysis.  In addition, only a time-series approach can take 

overdispersion into account (Lu and Zeger 2007). 

 

Apheis will continue to investigate important methodological issues and uncertainties 

surrounding HIA findings in its new EC co-funded project, Aphekom. 

 
Achievements 
 

Among others the Apheis program has: 

• Created an active public-health and environmental network that facilitates the flow of information 

between environmental and health professionals, and developed expertise across Europe 

ANNEX B



 8 

• Guided and optimized the measurement of air pollutants by local air-quality-monitoring networks so 

these networks meet the needs of public-health monitoring 

• Contributed to the training of environmental-health professionals 

• Provided information to evaluate the effectiveness of different scenarios for reducing air-pollution levels 

on local, national and European levels 

• Gained recognition from local and national authorities as able to provide sound scientific advice on 

health risks related to air pollution 

• Attracted interest from cities not involved in the Apheis program to join the Apheis network 

 

Impact of the Apheis project 
 

Implications for EU policy making 
 

To contribute to the discussions between the European Council and the Parliament on new limit 

values for PM2.5, the Apheis project estimated the potential benefits in terms of deaths that could be 

postponed in 26 European cities by reducing PM2.5 annual levels to 25, 20, 15 and 10 µg/m
3 
respectively. 

In specific, reducing annual mean levels of PM2.5 to 15 µg/m
3
 could postpone three times more 

premature deaths in the Apheis cities than a reduction to 25 µg/m
3
 (13,200 vs. 4,400 deaths) (Figures 8). 

This number could grow by up to five times if PM2.5 levels were reduced to 10 µg/m
3
 (22,200 vs. 4,400 

deaths). Apheis also made a sensitivity analysis to check the changes in HIA estimates using other C-R 

Functions or other correction factors for the ratio of PM2.5/PM10, and the main conclusions here 

remained the same (Ballester et al. 2008).   

 

Impact on the centers’ work and on policy making 

 

Impact on the centers’ work 
Centers learned the philosophy, methods and tools of the HIA approach.  Apheis improved 

scoping, appraisal and reporting of HIA stages.   

The Apheis project provided an opportunity to harmonize existing local and national approaches 

to HIA.  Apheis enabled many cities to conduct enlarged local, regional and national HIAs.  Apheis 

“stimulated us to go further with both national and local HIAs” and obtain funding for this purpose 

(Stockholm and Gothenburg, Sweden; Andalucia, Spain). 

Apheis fostered dialog between environment and health professionals locally.  Apheis also led to 

the exchange of know-how in different fields at the EU level.  And gave centers the opportunity to meet 

with international experts and create lasting relationships with them.  “A significant impact due to the 

international dimensions of the project” (Bucharest, Romania). 

Involvement in the Apheis project made local findings more credible. Apheis provided the centers 

with “a stimulus from the outside” that facilitated local work on air pollution and health. “Involvement in 

the Apheis project increased the prestige of our team” (Madrid, Spain). 

Centers valued being able to compare findings with those of other cities. “Use of international 

benchmarking was a good starting point for a science-based discussion of the overall and local results” 

(Hamburg, Germany).   

Apheis provided an opportunity to apply HIA to other fields, e.g., domestic heating (Vienna, 

Austria), and opened doors for related HIA projects (Stockholm and Gothenburg, Sweden). 

Apheis methodology was applied in the framework of Enhis 2 project to develop an online tool 

for the HIA of urban air pollution using European data bases and/or local data (www.hiair.eu). 
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Impact on policy making 
Apheis findings contributed to local, regional and national environmental-health action plans.  

Local centers were asked to speak to local and national authorities.  With Apheis “We can show people 

and policy makers a clear result about impact of air pollution on health.”  “Apheis findings are very 

helpful in the current discussion on reducing air pollution in big cities” (Ljubljana, Slovenia). “Apheis 

findings, beside other results on the impact of air pollution on health, led the Spanish Government to 

approve the new Law on Air Quality” (Valencia, Spain). 

Apheis raised awareness through the mass media and NGOs.  HIA findings were easier to 

communicate than other findings (Stockholm and Gothenburg, Sweden).  “The results of Apheis were 

always attractive for journalists, much more than telling them about RRs or ORs.  So HIA provides a very 

useful tool for informing the public.” (Athens, Greece).  “The picture with air pollution influence on life 

expectancy had a huge impact in the Netherlands.  It was very helpful to translate scientific information 

into pictures.” (Rotterdam, Netherlands).  “The assessment of long-term impact of air pollution, 

especially years of life lost, was extremely useful for us” in terms of communication. (Budapest, 

Hungary). 

“Apheis creates a good framework in which results can be properly assessed and compared with 

others from similar and different places.” (Bilbao, Spain).  “We used the Apheis information for 

benchmarking, which is very important for civil servants and politicians who want to know if they have 

unique problems or if problems are similar in other cities.” (Rotterdam, Netherlands). 
 

Problems remain 
While Apheis increased awareness among the general public of the impact of air pollution on 

health, there has generally been little change in its behavior.  In some countries, Apheis findings had little 

impact because of higher national priorities (Israel) and because other sources of information on the 

effects of air pollution on health were available (Rome, London). 

Centers were concerned by the lack of EU willingness to fund a European system for monitoring 

the effects of air pollution on health on a continuous basis. 
  

Conclusions for the EHTP and other projects 
 

To compare methods and findings between cities:  
• Build a collaborative network from the bottom up to stimulate cooperation and facilitate decision 

making on the local, national and higher regional levels 

• Use standardized protocols and tools for data collection (short and long term) and HIA analysis 

• Keep it simple to ensure feasibility and compliance in the long term 

• Involve local committees from the outset 

• Foster ongoing cross-fertilization between multiple disciplines and regions to create skilled, local teams; 

enrich know-how and the quality of its findings; and explore HIA methodological issues 

Remember, however, that public-health findings continue to have a limited impact on policy 

making, since decision makers are influenced by other factors they consider to be more important when 

setting policy.  Hence, we might consider whether we should put more emphasis in our training sessions 

on how to “sell” public-health findings to government policy makers and influencers. So work more with 

communication-strategy professionals. 
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Figure 1. The Apheis network 
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Figure 2. Apheis general organizational model and functions  
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Figure 3. Apheis Communication Strategy  
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Table 1. Summary of data components used for health impact assessment on short-term exposure in Apheis 3. 
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Scenarios References

Attributable 

cases
ICD9 ICD10 Daily mean

Black smoke

All ages, all causes mortality (excluding external causes)

All ages, cardiovascular mortality

All ages, respiratory mortality

All ages, cardiac hospital admissions

All ages, respiratory hospital admissions

< 800

390-459  

460-519

390-429

460-519

A00-R99

I00-I99

J00-J99

I00-I52

J00-J99

PSAS-9

Excel 

spreadsheet

1.006 (1.004 - 1.009)

1.004 (1.002 - 1.007)

1.006 (0.998 - 1.015)

1.011 (1.004 - 1.019)                              

1.0030 (0.9985 -1.0075)

Reduction to 50 µg/m
3

Reduction to 20 µg/m
3

Reduction by 5 µg/m
3

WHO, 2004

WHO, 2004

WHO, 2004

APHEIS 3, 2004

APHEIS 3, 2004

PM10

very short-term

All ages, all causes mortality (excluding external causes)

All ages, cardiovascular mortality

All ages, respiratory mortality

All ages, cardiac hospital admissions

All ages, respiratory hospital admissions

< 800

 390-459 

 460-519

 390-429

460-519

A00-R99

I00-I99

J00-J99

I00-I52

J00-J99

PSAS-9

Excel 

spreadsheet

1.006 (1.004 - 1.008)

1.009 (1.005 - 1.013)

1.013 (1.005 - 1.021)

1.006 (1.003 - 1.009)

1.0114 (1.0062 - 1.0167)

Reduction to 50 µg/m
3

Reduction to 20 µg/m
3

Reduction by 5 µg/m
3

WHO, 2004

WHO, 2004

WHO, 2004

APHEIS 3, 2004

APHEIS 3, 2004

PM10 cumulative 

short-term (40 days)

All ages, all causes mortality (excluding external causes)

All ages, cardiovascular  mortality

All ages, respiratory mortality

< 800

 390-459  

460-519

A00-R99

I00-I99

J00-J99

PSAS-9

Excel 

spreadsheet

1.01227 (1.0081 - 1.0164)

1.01969 (1.0139 - 1.0255)

1.04206 (1.0109 - 1.0742)

Reduction to 50 µg/m
3

Reduction to 20 µg/m
3

Reduction by 5 µg/m
3

A. Zanobetti et al, 2002

A. Zanobetti et al, 2003

A. Zanobetti et al, 2003

PM10 with shrunken 

estimates All ages, all  causes mortality (excluding external causes) < 800 A00-R99

PSAS-9

Excel 

spreadsheet

RRs calculated  from betas 

& se of Apheis shrunken 

estimates for each city

Reduction to 50 µg/m
3

Reduction to 20 µg/m
3

Reduction by 5 µg/m
3

Apheis 3, 2004

ICD

Summary SHORT-TERM HIA

ST HIA for all Apheis cities 

Complementary ST HIA for some Apheis cities 
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Table 2. Summary of data components used for health impact assessment on long-term exposure in Apheis 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Health indicator ICD 9 ICD10 Tool

RR (95% IC)

For 10 µg/m
3 

increase

Scenarios References

Attributable 

cases
Annual mean

PM10

All causes mortality 

(excluding external 

causes)  < 800 A00-R99

PSAS-9

Excel 

spreadsheet

Trilateral & Apheis 2

1.043 (1.026 -1.061)

Reduction to 40 µg/m
3

Reduction to 20 µg/m
3

Reduction by 5 µg/m
3

Kunzli et al. 2000

PM2.5

All causes mortality

Cardiopulmonary mortality

Lung cancer

 0-999

 401-440 and 460-519

 162

A00-Y98

I10-I70 and J00-J99

C33-C34

PSAS-9

Excel 

spreadsheet

Average Pope, 2002

1.06 (1.02 - 1.11)

1.09 (1.03 - 1.16)

1.14 (1.04 - 1.23)

Reduction to 20 µg/m
3

Reduction to 15 µg/m
3

Reduction by 3.5 µg/m
3

C.A. III Pope, 2002

C.A. III Pope, 2002

C.A. III Pope, 2002

Gain in life expectancy Annual mean

PM2.5

Age > 30 only

All causes mortality

Cardiopulmonary mortality

Lung cancer

 0-999

 401-440 and 460-519

 162

A00-Y98

I10-I70 and J00-J99

C33-C34 AirQ

Average Pope, 2002

1.06 (1.02 - 1.11)

1.09 (1.03 - 1.16)

1.14 (1.04 - 1.23)

Reduction to 20 µg/m
3

Reduction to 15 µg/m
3

Reduction by 3.5 µg/m
3

C.A. III Pope, 2002

C.A. III Pope, 2002

C.A. III Pope, 2002

LT HIA for all-cities report

Summary LONG-TERM HIA
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Figure 4. Expected gain in life expectancy if PM2.5 annual mean levels would not exceed  

15 µg/m
3
 in Seville.
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Figure 5. Distribution of ozone daily mean levels and increase in daily mortality (summer) 

Caen, France 
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Figure 6. Incidence rates for hospital admissions in 22 cities (9 with emergency admissions,  

13 with general admissions)  
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Figure 7. Probability densities of PM10 shrunken coefficients for mortality in each of the 21 

cities and resulting estimated mixture distribution from all cities. Shown is also the 

probability density of the pooled over all cities (using random effects model) coefficient. 
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Figure 8. Potential postponements in total annual deaths (central estimate and 95% CI) 

among people age 30 years and over in the 26 Apheis cities for different decreases in annual 

PM2.5 levels.  
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Shin HH, Stieb DM, Jessiman B, Goldberg MS, Brion O, Brook J, 

Ramsay T, Burnett RT. Measuring Public Health Accountability of Air 
Quality Management. 
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ANNEX C 
Workshop on Methodologies for Environmental Public Health Tracking of 

Air Pollution Effects – January 15-16, 2008 

HEI/CDC/EPA Workshop Agenda   1 

Agenda 

Day one  

Registration and continental 

breakfast 

 7:30-8:00 

Welcome and Introductions   8:00-8:10 

Problem Statement and Charge Tom Matte 8:10-8:20 

Overview of agenda and process Jon Samet 8:20-8:30 

EPHT Context   

EPHT air pollution health tracking 
overview and New York example  

Valerie Haley 8:30-8:50 

ED visits for asthma and ambient ozone 
in Maine 

Chris Paulu 8:50-9:00 

Air quality data sources for EPHT Fred Dimmick 9:00-9:15 

Communicating air quality health 

impacts to stakeholders  

Dan Wartenberg 9:15-9:30 

Q and A  9:30-9:40 

Break  9:40-9:50 

Methodology    

Ozone and PM2.5 data in exposure 
assessment 

Warren White 9:50-10:05 

Statistical issues in health impact 
estimates at the state and local level 

Montserrat Fuentes 10:05-10:20 

Use of external CR functions for local 
scale health impact estimates 

Bryan Hubbell 10:20-10:35 

Measuring public health accountability of 
air quality management 

Richard Burnett 10:35-10:50 

Q and A  10:50-11:00 

Examples   

The EC APHEIS project Sylvia Medina 11:00-11:15 

Chronic PM2.5 health impact assessment 
in European cities 

Michal Krzyzanowski 11:15-11:30 

Small area health impact assessment Jon Levy 11:30-11:45 

London’s congestion charging / low 

emission zone programs – impact 
assessment 

H Ross Anderson 11:45-12:00 

Q and A  12:00-12:10 

Lunch  12:10-1:10 

Working group assignments Jon Samet/A Cohen/ 
Tom Matte 

1:10-1:15 

Working groups meet (break as needed) Chairs/rapporteurs 1:15-6:00 

Objective1 – Use of local analyses Thomas Louis/Jeremy 

Sarnat 

 

Objective 2 – Use of external CR 

function estimates 

John Balmes/Fuyuen 

Yip 

 

Objective 3 – Communications 

approaches 

John 

Bachmann/Nicholas 
Jones 

 

Group dinner (optional)  7:30 
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Air Pollution Effects – January 15-16, 2008 

HEI/CDC/EPA Workshop Agenda   2 

 

 
Day 2 

Progress and clarification of group 

charges 

Jon Samet 8:00-8:15 

Working groups meet (break as 

needed) 

 8:15-12:30 

Lunch  12:30-1:30 

Working groups meet  1:30-2:30 

Working groups report back and 
discussion 

Jon Samet and Working 
Group Rapporteurs  

 

Objective 1  Jeremy Sarnat 2:30-3:15 

Break  3:00-3:15 

Objective 2 Fuyuen Yip 3:15-4:00 

Objective 3 Nicolas Jones 4:00-4:45 

Concluding remarks and next steps Jon Samet/Tom 
Matte/Aaron Cohen 

4:45-5:00 

 
 
 




